

Standards Update

February 2018

ITU-T Packet Sync Recommendations Calnex

Calnov **ITU Sync Standards Categories** (2G/3G/4G FDD) Transfer of frequency to meet 50ppb (3G/4G TDD, LTE-A) Transfer of time to meet 1.5µs Using new networks with T-BC and SyncE at every node WORK (3G/4G TDD, LTE-A) Transfer of time to meet 1.5µs IN ROGRES Using existing networks WORK Transfer of time to meet 100 – 200ns (5G potential) IN PROGRES "Enhanced" clock specifications WOR IN Sync OAM (general) PROGRES

What's new?

Company Confidential

4

Consented Recommendations, Feb. 2018 Calnex

- "Consent" means they have been agreed in the technical committee, but there will be a one month commenting period before they are finally approved
- Amended or Revised Recommendations:
 - G.8264 Amd. 1 modifications to the QL codes for the enhanced clocks
 - G.8266 Amd. 1 additional information on measuring noise transfer
 - G.8271 Amd. 1 addition to appendix on asymmetry compensation
 - G.8271.1 Amd. 1 new appendix on measuring relative time error; various other minor changes
 - G.8271.2 Amd. 1 added network limits at clock output (point D)
 - G.8273 Revision includes previous amendments, plus various minor changes
 - G.8275.1 Amd. 2 revised appendix on clock states, plus various minor changes
 - G.8275.2 Amd. 2 revised appendix on clock states, new section on handling PTSF (loss of sync), plus various minor changes

•

Major Work Items In Progress

- G.8262.1 (enhanced SyncE clock)
 - Simulations on noise generation for different bandwidths and oscillator types, plus noise accumulation in a chain of clocks
 - Noise generation spec should be finalised by next meeting
 - Status: to be approved by end 2018
- G.8273.2 (Class C T-BC and T-TSC)
 - Based on enhanced SyncE clock
 - Noise accumulation simulations for long chains under way
 - Noise generation limit to be in the ±5ns to ±10ns range
 - Status: to be approved by end 2018
- G.8273.4 (APTS and PTS clock specifications)
 - Restructured document to separate APTS and PTS clocks
 - Provisional agreement on noise generation (50ns wander, and ±50ns cTE)
 - Noise tolerance agreed (G.8271.2 network limit)
 - Noise transfer and holdover still work in progress
 - Status: possible approval by end 2018, might be 2019

Company Confidential

Transfer of frequency to meet 50ppb

7

Mobile Technology

- 1G and 2G: basestations connected using E1 or T1 circuits
 - Basestations required frequency accuracy of 50ppb (5 parts in 10⁸)
 - "Freeloaded" off the known frequency accuracy of the E1 or T1 circuits from the SDH system
- **3G:** initially used E1 and T1 connectivity as before
 - Then data services came along...
 - HSDPA (as used by iPhone 3G) offered up to 14Mbit/s download speeds (although more typically 3.5Mbit/s)
 - Basestations needed to move to Ethernet connectivity to accommodate the higher data rates on the backhaul interface
- Now where is that nice stable frequency again?

G.8261: Frequency over Packet Interfaces Calnex

- Approach 1: Use the physical layer clock
 - SyncE clocks (EEC) made identical to SECs in performance terms

- Approach 2: Use a packet timing protocol
 - Packet timing protocols such as PTP or NTP used to deliver frequency

Relevant Standards for Frequency

- Published recommendations related to frequency synchronization:
 - G.8261 General aspects, network limits for frequency synchronization
 - G.8262 Ethernet Equipment Clock Specification
 - G.8264 Ethernet Synchronization Messaging Channel (ESMC)
 - G.8265 General network architecture for packet-based frequency sync
 - G.8265.1 PTP Profile for frequency
 - G.8261.1 Network limits for packet-based frequency synchronization
 - G.8263 PTP Slave Clock for frequency
 - G.8266 Telecom Frequency Grandmaster Specification
- Standards complete and stable for several years

Transfer of time to meet 1.5µs

Company Confidential

11

PTP with Full Timing Support

Features

- Every element in the path must be "PTP aware"
- Both T-BC (boundary clocks) and T-TC (transparent clocks) covered in standards
- Uses a combination of SyncE and PTP, where SyncE provides the frequency and PTP the phase/time

Company Confidential

PTP with Full Timing Support

Benefits

- Controlled, deterministic environment suitable for both frequency and time/phase transfer
- "Building block" approach to network construction, with example time error budgets in G.8271.1
- Profile, architecture and clock performance well defined by ITU-T

Challenges

- All equipment in path needs to be PTP aware
- No control of asymmetry in the network

Synchronization in Access

 From a performance perspective, each network element is allocated the equivalent budget to one T-BC:

- Internally, the communication between units does not have to be PTP (e.g. GPON may use the native time transfer mechanism)
 - This is a performance budget, not a protocol specification
- SyncE-assisted TCs to have same budget as SyncE-assisted BCs
 - i.e. G.8273.3 performance spec will be based on G.8273.2

Relevant Standards for FTS

- Published recommendations related to full timing support:
 - G.8271 General considerations for time synchronization
 - G.8275 General network architecture for time synchronization
 - G.8275.1 PTP Profile for full timing support
 - G.8271.1 Network limits for full timing support
 - G.8272 Primary Reference Time Clock Specification
 - G.8273.2 Telecom Boundary Clock Specification
 - G.8273.3 Telecom Transparent Clock Specification
- Standards complete, but some recommendations are undergoing minor revisions and enhancements

Transfer of time over existing networks

16

Partial Timing Support Use Cases - 1 Calnex

PTP backup to GNSS ("assisted partial timing support", or APTS)

Features

- Objective is backup to GNSS, i.e. "assisted holdover"
- GNSS monitors PTP service quality and network asymmetry
- PTP can maintain timebase when GNSS is out of service (e.g. due to jamming or antenna failure)

Company Confidential

Partial Timing Support Use Cases - 2 Calnex

PTP distribution over a local LAN ("partial" or "no timing support")

Features

- Objective is to distribute time over a small PTP-unaware (or partially unaware) network
- Small network, potentially only a single in-building network
- Places GNSS source as close to the end clock as possible Company Confidential

Partial Timing Support Use Cases - 3 Calnex

Network Bridging

Features

- Objective: bridge between two full timing support networks
- Example: a mobile operator may not own the access network, and need to bridge across a third party network
- Requires inter-working functions (IWF) to link between the networks Company Confidential 19

Relevant Standards for APTS and PTS Calnex

- G.8271.2: Partial Timing Support Network Limits
 - Uses *pktSelected2WayTE* as primary metric
 - This is the time error calculated on the 2-way flow, after packet selection
 - Two limits: APTS (*PTP backup of GNSS*), PTS (*PTP-unaware networks*)
 - Network limit for APTS
 - Peak-to-peak *pktSelected2WayTE* < 1100ns at input to slave
 - Selection criteria: 0.25% fastest packets in each 200s window
 - Network limit for PTS
 - Maximum absolute *pktSelected2WayTE* < 1100ns at input to slave
 - Selection criteria: 0.25% fastest packets in each 200s window
 - Status: Published August 2017
- G.8273.4: Assisted Partial Timing Support Clock
 - GNSS primary time source, PTP backup
 - Uses GNSS to measure PTP asymmetry during normal operation
 - Status: possible completion by end 2018

Enhanced Specifications for 5G

Company Confidential

21

What is 5G?

• **IMT-2020** – the ITU's vision of "5G", to roll out in 2020

Company Confidential

What are the implications?

- Peak data rate of 20Gbit/s
 - High speed backhaul of 25Gbit/s or more
- User experienced data rate of 100-1000Mbit/s
 - Co-operative processing and interference management
- Connection density of 1M connections/km²
 - Requires dense small cell deployment
- Latency < 1ms
 - Distributed architecture, data processing and switching at the edge
 - Fronthaul, distributed radio units with co-located baseband and switching

New 5G Frame Structure

Six numerology options for 5G symbol length

Using same CP overhead regardless of numerologies								
Scaling factor (2 ⁿ)	-2	-1	0	1	2	3		
Subcarrier spacing (kHz)	3.75	7.5	15	30	60	120		
OFDM symbol duration (μs)	266.67	133.33	66.67	33.33	16.67	8.33		
Normal CP length (µs)	(20.8,1 8.76)	(10.4, 9.38)	(5.2, 4.69)	(2.6, 2.34)	(1.3, 1.17)	(0.65,0. 59)		

4G 5G Candidate

- In 4G, cyclic prefix length is 4.69µs
 - Requires time alignment for overlapping basestations of ±1.5µs
- In 5G, cyclic prefix could be as short as 1.17µs
 - Requires time alignment for overlapping basestations of ±0.39 μs

Fronthaul sync requirements

Inter-site Carrier Aggregation (CA)

- CA bonds two carriers together into a single channel
 - For two non-adjacent carriers in the same band, or two carriers in different bands, frame alignment must be better than 260ns
- But it's always been that, even in 4G. So what's new?
 - In 4G, aggregated carriers were transmitted from the same antenna, generated by the same eNodeB
 - In 5G fronthaul architecture, carriers may be transmitted from separate radio units, connected over an Ethernet fronthaul
- 260ns frame alignment translates to ±130ns from central clock

Fronthaul sync requirements

Co-ordinated Multi-Point (CoMP)

- CoMP is a family of technologies
 - Joint Transmission or Reception
 - Co-ordinated Beamforming
 - Dynamic Point Selection
 - Dynamic Point Blanking
- Joint transmission requires frame alignment of ~0.5µs at the UE (*i.e. phone or user device*)
 - Translates to around 250ns at the radio unit

((C))) ^{Dynamic} ^{switching} (((C)))

Dynamic Point Selection

different resources scheduled

Coordinated Beamforming

Dynamic Point Blanking

Fronthaul sync requirements

Positioning

- OTDOA (Observed Time Difference of Arrival) calculates the position of the UE (User Equipment*) from the difference in the arrival time of the UE signal at three or more basestations
- This requires the basestations to be accurately synchronized
- Location accuracy requirements:
 - E911: within 50m horizontal accuracy for 80% of emergency calls
 - Requires time synchronization to within 150ns
 - IoT: indoor device location to within 3m (see 3GPP TR 22.862)
 - Requires time synchronization to within 10ns
- Techniques other than OTDOA also exist, probably multiple methods will be deployed

Enhanced Clocks

Company Confidential

Enhanced Clock Specifications

- G.8272.1: "ePRTC" **DONE**
 - Time accuracy to better than 30ns
 - Holdover within 100ns for 14 days, effectively mandates Cs beam technology
 - Published November 2016
- G.811.1: "ePRC" **DONE**
 - Most modern PRCs are at least 10x better than the 1996 G.811 standard
 - New version to have frequency accuracy around 0.5 to 1 part in 10¹²
 - Published August 2017
- G.8272: PRTC Class B
 - Time accuracy better than 30ns (similar to G.8272.1)
 - No long-term holdover specification, making non-Cs implementations possible, e.g. dual-band GNSS receivers
 - Cheaper solution for operators with distributed networks
 - Can use core-based enhanced frequency networks and SyncE to maintain time at distributed PRTCs
 - Status: scheduled for completion December 2018

Enhanced Clock Specifications

- G.8262.1: "eEEC"
 - Existing EEC based on 20-year old SEC technology
 - Enhanced version to be compatible with current EEC, but improve noise generation, transients and holdover
 - Facilitates long-term assisted holdover of accurate time clocks, plus lower-noise T-BCs
 - Status: possible completion by end 2018
- G.8273.2: "Class C" T-BC and T-TSC to be developed
 - Based on the eEEC specification
 - Exhibits lower noise generation and better SyncE-assisted holdover
 - Status: possible completion by end 2018

Enhanced Network Limits

- G.8261: Network Limit for chain of eEECs
 - Network limit much lower, to permit better SyncE-assisted holdover of T-BCs and T-TSCs
 - Status: possible completion by end 2018
- G.8271.1: Network Limit for chain of T-BCs
 - To be based on Class C T-BC specification, around ±130ns end-to-end
 - Status: possible completion by end 2018

Comparing G.8262 to G.8262.1

Parameter	EEC (G.8262)	eEEC (G.8262.1) (agreed values)	eEEC (G.8262.1) (proposed values)
Frequency Accuracy	4.6ppm	Same value	
Pull-in/Hold-in	4.6ppm	Same value	
Wander generation	40ns @ 1s, rising to 113ns @1000s	Not agreed yet	Values as low as 10ns proposed, but not agreed
Wander tolerance	250ns @ 1s, rising to 5000ns @ 1000s	Same value (mixed chains)	Lower value discussed for all-eEEC chains.
Jitter generation	0.5UI (1G, 10G) 1.2UI (25G lanes)	Same value	
Jitter tolerance	250ns @ 10Hz, reducing to 1.5UI (3.6UI for 25G lanes)	Same value	
Clock Bandwidth	1 – 10Hz	1 – 3Hz	
Transient response	120ns initial step, then 50ns/s (const. temp)	5ns initial step provisionally agreed	2.5ns/s slope proposed but not agreed
Holdover	120ns initial step, then 50ns/s (const. temp) 2000ns/s (var. temp)	5ns initial step provisionally agreed	2.5ns/s slope (const. temp) 300ns/s slope (var. temp) (not gareed) 31

Sync OAM

Company Confidential

32

Sync OAM and Management

- Model proposed using an alternative PTP flow as a reference
 - Not a perfect reference, but a sanity check and indication of networkrelated issues
- Frequency sync defects and parameters to be documented in a revised version of G.781
 - Status: Consented June 2017, now in final approval
- Time sync defects and parameters to be documented in new recommendation G.781.1
 - Status: scheduled for completion in February 2018

Insight and Innovation calnexsol.com

Tim Frost, Strategic Technology Manager, tim.frost@calnexsol.com