

ITU-T Sync Standards Update

February 2020

ITU Sync Standards Categories

- Transfer of frequency to meet 50ppb (2G/3G/4G FDD)
 - Using SyncE, or using PTP over existing networks
- Transfer of time to meet 1.5µs
 - Using PTP over new networks with T-BC and SyncE at every node
- Transfer of time to meet 1.5µs
 - Using PTP over existing networks
- Transfer of time to meet 130ns
 - PTP over Fronthaul networks
- Sync OAM

(3G/4G TDD, LTE-A)

(general)

(5G NR)

ITU-T Packet Sync Recommendations

Definitions / Terminology		G.8260: Definitions and Terminology for Synchronization in Packet Networks (includes PDV metrics)		
Basic Aspects	Frequency to 50ppb	Time and Phase to 1.5µs	Enhanced Time for 5G	
	G.8261: Timing and Synchronization Aspects in Packet Networks (<i>Frequency</i>)	G.8271: Time and Phase Synchronization Aspects in Packet Networks		
Network	G.8261.1: PDV Network Limits (Frequency)	G.8271.1: Network Limits for Time/Phase (Full Timing Support) End applications requiring ±1.5µs End applications requiring 130/260ns relative time er		
Requirements		► G.8271.2: PDV Network Limits (<i>Partial Timing Support</i>)	G.8261: Enhanced Network Limits for Frequency	
Clock Specifications	► G.8262: Ethernet Equipment Clock (EEC) Specification		 G.8262.1: Enhanced EEC Specification G.811.1: Enhanced PRC Specification 	
	G.8263: PTP Slave Clock Specification (Frequency) G.8266: Grandmaster Clock Specification (Frequency)	► G.8272: PRTC Specification – Class A	PRTC Specification – Class B	
		 ► G.8273: Time/Phase Clocks Framework ► G.8273.1: T-GM Specification 	G.8272.1: Enhanced PRTC Specification	
		► G.8273.2: T-BC & T-TSC Specifications – Class A, B	T-BC & T-TSC Specifications – Class C, D	
		► G.8273.3: T-TC Specification – Class A, B		
		G.8273.4: APTS and PTS Clock Specifications		
Methods and Architecture	 G.8264: Distribution of Timing Information (ESMC) G.8265: Architecture for Packet-Based Freq. Delivery 	G.8275: Architecture for Packet-Based Time/Phase Delivery FTS, APTS and PTS architectures	Coherent network PRTC (cnPRTC) Fronthaul synchronization architectures, FlexE/OTN	
Profiles	G.8265.1: PTP Telecom Profile for Frequency	 G.8275.1: PTP Profile for Time (Full Timing Support) G.8275.2: PTP Profile for Time (Partial Timing Spt) 		
Company Confi	dential Published	Approved Under development	Not active	

What's new?

Recommendations approved in Feb. 2020

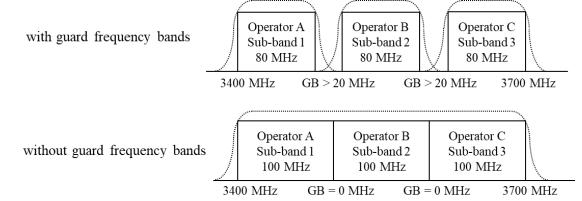
(to be published by end of March 2020)

- **Clock specifications:**
 - G.8273.4
 - APTS and PTS clock specification
 - **G.8262 Amd. 1** Adds PAM4 (50G, 100G, 200G) interfaces to the list of SyncE-capable interfaces
 - Scope change to remove restrictions on PRTC-B deployment G.8272 Rev.
 - **G.8273.2 Amd. 1** Mostly editorial changes
- Network limit specifications:
 - **G.8261 Amd. 1** Adds the TDEV network limit for a chain of enhanced clocks (e.g. eEECs)
 - Adds discussion on how to estimate relative TE from existing measurements G.8271.1 Rev.
- PTP Profile updates:
 - G.8275.1 Rev. Adds reference to IEEE1588-2019 (PTP version 2.1)
 - G.8275.2 Rev. - Guidance on clockAccuracy values for enhanced PRTCs in holdover
- General Information:
 - G.8260 Rev.
 - G.8271 Rev.
 - G.8273 Rev.
 - Appendix on least-squares filtering for noise transfer testing **G.Sup.SyncOAM** – Informative supplement detailing what OAM parameters clocks should support
- **GNSS Tech. Rep.** Informative document on using GNSS for timing

New development, see next slide

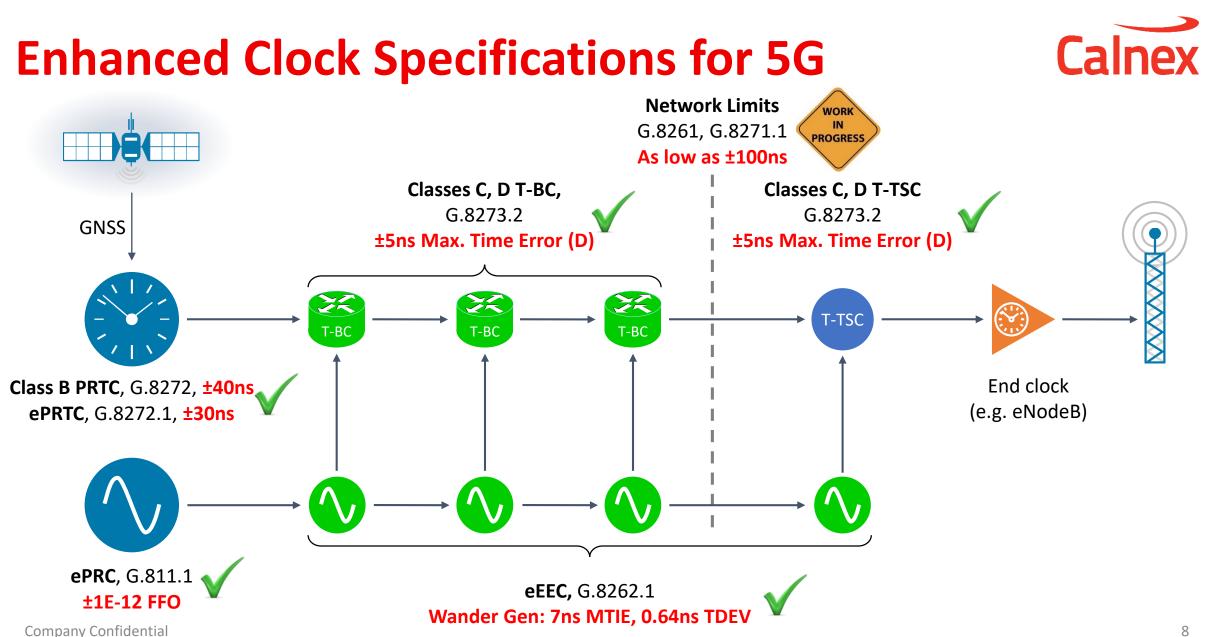
Information on inter-operator sync requirements for 5G NF

Guidelines on relative TE measurement


Main new performance

spec. at Feb.'20 meeting

Inter-operator synchronization


• At 5G, operators want to remove frequency guard bands to gain spectrum:

- To avoid interference, all operators must synchronize to the same reference (e.g. UTC)
 - Currently there is a "gentleman's agreement" between Japanese operators to all synchronize to within 1.5µs of UTC
 - European operators are also raising the topic
 - New Appendix VI in G.8271 discusses the issue
- Expect this to start to become a regulatory requirement for 5G TDD operators
 - This will therefore require ongoing testing and validation, particularly field test
- May even lead to spectrum sharing in some cases

Enhanced Clocks and Network Limits

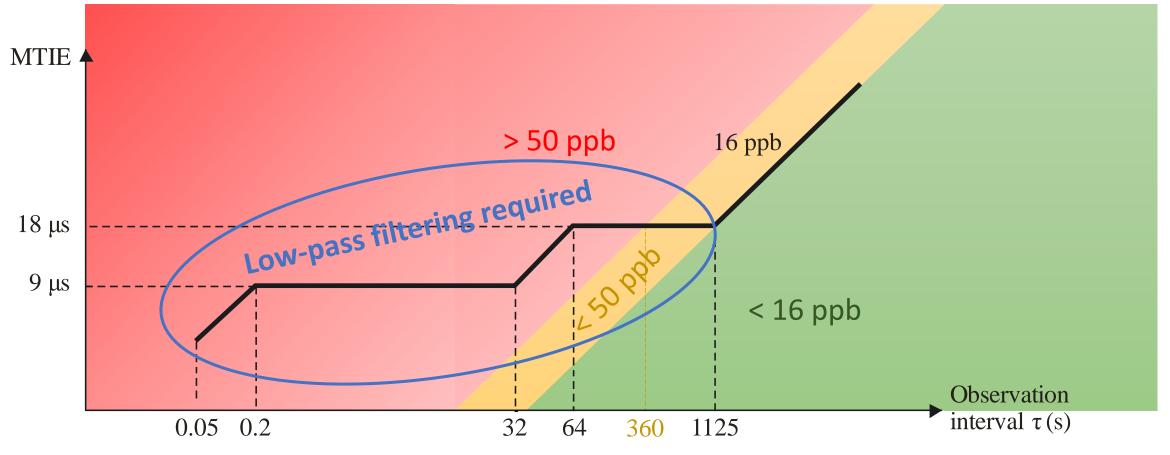
Enhanced Specifications for 5G

- Enhanced specifications agreed:
 - G.811.1 ePRC published August 2017
 - G.8272.1 ePRTC published August 2017
 - G.8272: PRTC Class B published January 2019
 - G.8262.1: eEEC published January 2019
 - G.8273.2: Class C and Class D T-BC and T-TSC
- G.8261: Network Limit for chain of eEECs
 - Network limit much lower, to permit better SyncE-assisted holdover of T-BCs and T-TSCs
 - Status: agreed, to be published by end 2019
- G.8271.1: Network Limit for chain of T-BCs
 - New budget to meet 1.5µs using Class C clocks, even under long outages (2-3 days) √
 - New network limit based on Class C, D T-BC specification, targeting around ±130ns end-to-end
 - New network limit for relative time error, targeting fronthaul clusters
- Status: proving more difficult than expected Company Confidential Expected completion now 2021

9

– published January 2019

Fronthaul networks – what's the issue?



- Up to now, it has commonly been thought that the relative TE requirements (130 or 260ns TAE) is the biggest problem
- New issue emerging is frequency accuracy to meet 50ppb
- Problem is that the Radio Units cannot provide the low-pass filtering that previous NodeB or eNodeB's provided
 - Small cheap devices, with much worse thermal environments
 - Old network limits meet the 50ppb requirements over the long term, but not the short term
 - Even chains of Class C clocks look to have too much short term wander
- Frequency network limits currently under discussion between ITU-T and ORAN
 - ORAN want around 15ppb from the network, with 75mHz filtering
 - Acceptable solution is not readily apparent at present (Feb. 2020)

Frequency network limit

• G.8261.1 Frequency Network Limit

G.8261.1-Y.1361.1(12)_F04

G.8272: Comparing PRTC Classes

Parameter	Conditions	Class A	Class B	ePRTC (G.8272.1)
Max TE _L	1pps: unfiltered PTP: 100-sample moving average low-pass filter	100ns	40ns	30ns
dTE _L MTIE	1pps: unfiltered PTP: 100-sample moving average low-pass filter	100ns (max)	40ns (max)	30ns (max)
dTE _L TDEV	1pps: unfiltered PTP: 100-sample moving average low-pass filter	3ns up to 100s, rising to 30ns @ 1000s	1ns up to 100s, rising to 5ns @ 500s	1ns up to 30Ks, rising to 10ns @ 300Ks

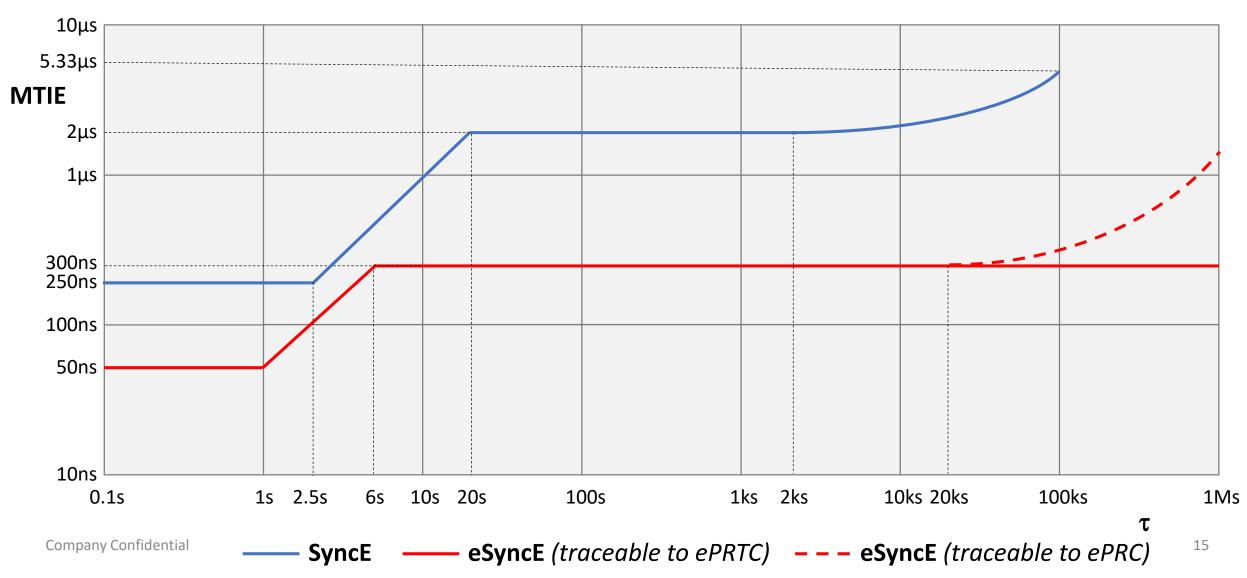
- ePRTC has very long-term holdover, requiring high-performance Caesium oscillator
- PRTC-B intended for distributed applications where an ePRTC would not be practical
 - Expected to be based on multi-band GNSS receivers to compensate for the ionosphere
 - Holdover provided by SyncE rather than a Cs oscillator

SyncE: Comparing G.8262 to G.8262.1

Parameter	EEC (G.8262)	eEEC (G.8262.1)
Frequency Accuracy	4.6ppm	Same value
Pull-in/Hold-in	4.6ppm	Same value
Wander generation	MTIE: 40ns @ 0.1s, rising to 113ns @1000s TDEV: 3.2ns @ 0.1s, rising to 6.4ns @1000s	MTIE: 7ns @ 0.1s, rising to 25ns @1000s TDEV: 0.64ns @ 0.1s, rising to 1.28 ns @1000s
Wander tolerance	250ns @ 0.1s, rising to 5000ns @ 1000s	Same value (allows mixed chains)
Jitter generation	0.5UI <i>(1G, 10G)</i> 1.2UI <i>(25G lanes)</i>	Same value (1G) 10G, 25G: for further study
Jitter tolerance	250ns @ 10Hz, reducing to 1.5UI (3.6UI for 25G lanes)	Same value (1G) 10G, 25G: for further study
Clock Bandwidth	1 – 10Hz	1 – 3Hz
Transient response	120ns initial step, then 50ns/s (const. temp)	10ns initial step, then 10 ns/s (const. temp)
Holdover	120ns initial step, then 50ns/s frequency offset, plus 1.16 x 10 ⁻⁴ ns/s ² drift <i>(const. temp)</i>	10ns initial step, then 10 ns/s frequency offset, plus 1.16 x 10 ⁻⁴ ns/s ² drift <i>(const. temp)</i>

Key: Green – same as G.8262 EEC spec Red – changes to G.8262 EEC spec

G.8273.2: Comparing T-BC Classes


Parameter	Conditions	Class A	Class B	Class C	Class D
Max TE	Unfiltered, 1000s	100ns	70ns	30ns	FFS
Max TE _L	0.1Hz low-pass filter, 1000s measurement	-	-	-	5ns
сТЕ	Averaged over 1000s	50ns	20ns	10ns	FFS
dTE _L MTIE	0.1Hz low-pass filter Const. temp, 1000s	40ns	40ns	10ns	FFS
	0.1Hz low-pass filter Var. temp, 10000s	40ns	40ns	FFS	FFS
dTE _L TDEV	0.1Hz low-pass filter Const. temp, 1000s	4ns	4ns	2ns	FFS
dTE _H	0.1Hz high-pass filter Const. temp, 1000s	70ns	70ns	FFS	FFS

- Class C aimed at shorter chains (up to 10 nodes)
- Class D aimed at longer chains (up to 20 nodes), and fronthaul networks in particular
- All classes now defined over 1, 10, 25, 40 and 100GE interfaces

Company Confidential

SyncE vs. Enhanced SyncE Network Limits

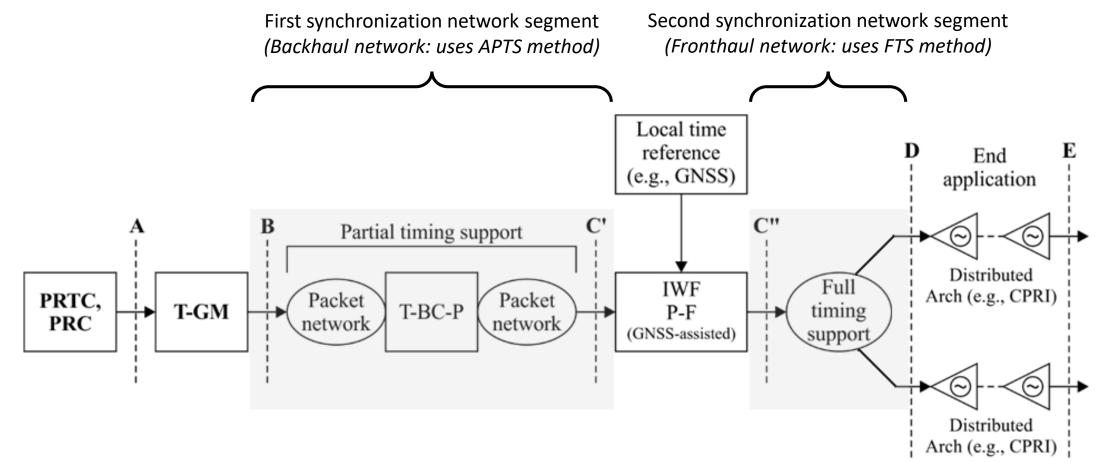
Work in Progress

Future revisions planned during 2020

- **G.8261 Amd. 2** *Network Limits for Frequency*
 - Network limit for short chains of enhanced clocks in fronthaul
- **G.8271.1 Amd. 2** Network Limits for FTS
 - Network limits for ±130ns and relative TE
 - Frequency to meet 50ppb in an RU
- **G.8271.2 Revision** Network Limits for PTS
 - Segmented networks for fronthaul
- G.8262.1 Amd. 2 Enhanced SyncE Clocks
 - Minor updates

- G.8273.3 Amd. 2 Transparent Clocks
 - Possible upgrade to Class C
- G.8273.4 Amd. 1 APTS and PTS clocks
 - Minor updates
- **G.8275 Amd. 2** *Time Sync Architectures*
 - Further details on Coherent Network PRTC (cnPRTC)
 - Possibly also material on FlexE and OTN-based fronthaul architectures

Fronthaul Networks



- Fronthaul networks have several ramifications
 - Tight relative TE requirements to meet TAE (Time Alignment Error) on the air interface
 - Low filtering capability of network elements such as RUs, leading to tighter frequency requirements on the network (*driven by requirements coming out of ORAN*)
 - Use of multiple segments (e.g. FTS in the fronthaul, but APTS or PTS to the "common point") (also driven by requirements coming out of ORAN)
 - New transport techniques (FlexE, FlexO, G.mtn)
- Affects various standards:
 - G.8271.1 for both relative TE and frequency error requirements
 - G.8271.2 for multiple segment architectures
 - G.8273.2 and G.8262.1 for enhanced clocks

Multiple Segment Architectures

• Example of multiple segment architecture:

Coherent Network PRTC

- Network of PRTCs for improved resiliency and accuracy
 - PRTCs exchange time information directly, enabling both ensembling and redundancy
 - "Rogue" PRTCs can be detected and eliminated from timing network
 - Interconnect might be PTP, high accuracy PTP (e.g. White Rabbit), or dedicated optical interconnect
- Possible connection to national lab for both highly accurate UTC(k) and legal time
- Information on cnPRTC to go into G.8275 (Architecture) document
- Status:
 - Expected completion by late 2020

Sync OAM and Management

- Model proposed using an alternative PTP flow as a reference
 - Not a perfect reference, but a sanity check and indication of network-related issues
 - Described in G.SuppSyncOAM, a working document collecting Sync OAM material
 - Status: consented February 2020
- Frequency sync defects and parameters to be documented in a revised version of G.781
 - Status: Published August 2017
 - Update consented February 2020
- Time sync defects and parameters to be documented in new recommendation G.781.1
 - Status: probable completion late 2020

Insight and Innovation

calnexsol.com

Tim Frost, *Strategic Technology Manager,* tim.frost@calnexsol.com