

ITU-T Sync Standards Update

October 2019

1

ITU Sync Standards Categories

- Transfer of frequency to meet 50ppb (2G/3G/4G FDD)
 - Using SyncE, or using PTP over existing networks
- Transfer of time to meet 1.5µs
 - Using PTP over new networks with T-BC and SyncE at every node
- Transfer of time to meet 1.5µs
 - Using PTP over existing networks
- Transfer of time to meet 130ns
 - "Enhanced" clock specifications
- Sync OAM

(5G potential)

(general)

(3G/4G TDD, LTE-A)

Company Confidential

ITU-T Packet Sync Recommendations

Definitions / Terminology		G.8260: Definitions and Terminology for Synchronization in Packet Networks (includes PDV metrics)		
Basic Aspects	Frequency to 50ppb	Time and Phase to 1.5µs Enhanced Time for 5G		
	G.8261: Timing and Synchronization Aspects in Packet Networks (<i>Frequency</i>)	G.8271: Time and Phase Synchronization Aspects in Packet Networks		
Network	G.8261.1: PDV Network Limits (Frequency)	G.8271.1: Network Limits for Time/Phase (<i>Full Timing Support</i>) End applications requiring ±1.5µs End applications requiring 130/260ns relative times		
Requirements		G.8271.2: PDV Network Limits (Partial Timing Support) G.8261: Enhanced Network Limits for Frequency		
Clock Specifications	G.8262: Ethernet Equipment Clock (EEC) Specification	 ► G.8262.1: Enhanced EEC Specification ► G.811.1: Enhanced PRC Specification 		
	G.8263: PTP Slave Clock Specification (Frequency) G.8266: Grandmaster Clock Specification	G.8272: PRTC Specification – Class A PRTC Specification – Class B		
		G.8272.1: Enhanced PRTC Specification		
		G.8273: Time/Phase Clocks Framework		
	Trequency	G.8273.1: T-GM Specification		
		► G.8273.2: T-BC & T-TSC Specifications – Class A, B T-BC & T-TSC Specifications – Class C, D		
		► G.8273.3: T-TC Specification – Class A, B		
		G.8273.4: APTS and PTS Clock Specifications		
Methods and Architecture	G.8264: Distribution of Timing Information (ESMC)	G.8275: Architecture for Packet-Based Time/Phase Delivery Coherent network PRTC (cnPRTC)		
	G.8265: Architecture for Packet-Based Freq. Delivery	FTS, APTS and PTS architectures Fronthaul synchronisation architectures, FlexE/OTN		
Profiles	G.8265.1: PTP Telecom Profile for Frequency	► G.8275.1: PTP Profile for Time (Full Timing Support)		
		G.8275.2: PTP Profile for Time (Partial Timing Spt)		
Company Confi	dèntiai Published	Approved Under development Not active 3		

What's new?

Recommendations approved in July 2019

(to be published by end of 2019)

- Network limit specifications:
 - **G.8261 Revision** Adds the network limit for a chain of enhanced clocks (e.g. eEECs)
 - **G.8271.1 Amd. 2** Adds new appendix about fronthaul architectures
 - No new performance specifications
- High-accuracy "enhanced" clock specifications for 5G:
 - **G.8262.1 Amd. 1** Adds wander tolerance spec, adds parameters S and T to transient response - Adds Appendix on back-to-back testing for media converters (e.g. μW , OTN)
 - **G.8272.1 Amd. 2** Adds an integrated ePRTC/T-GM function (same performance) ٠
 - Re-organizes the document to bring all clock classes into the main body G.8273.2 Rev. ۲
 - Includes guidelines on back-to-back testing of Class C clocks (as well as A & B)

• PTP Profile updates:

- **G.8265.1 Amd. 1** Adds a brief note about processing of Quality Levels. No technical change. •
- **G.8275.1 Amd. 3** Adds support for transmission of PTP over OTN OSMC channel
- **G.8275.2 Amd. 3** Adds an Appendix describing operation of the profile over a LAG
- General Information:
- **G.8275 Amd. 2** Adds information about inter-working between G.8275.1 and G.8275.2 Company Confidential
 - Adds information about timescale combination for the cnPRTC

Calnex

Main new

performance

spec at July

meeting

Calnex

Topics discussed at the October meeting

- Network limit specifications:
 - Network limits for short chains of clocks, typical of a fronthaul network
 - Relative time error network limits and measurement techniques
 - Budgeting for use of Class C clocks to meet 1.5µs, covering longer reference outages
- High-accuracy "enhanced" clock specifications for 5G:
 - Relative time error between ports of a boundary clock
 - Very high accuracy PRTC spec proposed by Chinese companies probably too high to be achievable
- PTP Profile updates:
 - CMCC proposed a new TLV containing information about the clocks in the sync path, and a revision to the BMCA to make use of this information. Not yet agreed, but already supported by Paragon Neo
- APTS and PTS
 - Clarifications of draft specification to make it clearer and more testable
 - Discussed mixed network scenarios (e.g. PTS followed by an FTS segment) topic coming from O-RAN
- SyncOAM

• Clarifications on draft specification to make it ready for agreement in February

Enhanced Clocks and Network Limits

Enhanced Specifications for 5G

- Enhanced specifications agreed:
 - G.811.1 ePRC published August 2017
 - G.8272.1 ePRTC published August 2017
 - G.8272: PRTC Class B published January 2019
 - G.8262.1: eEEC published January 2019
 - G.8273.2: Class C and Class D T-BC and T-TSC
- G.8261: Network Limit for chain of eEECs
 - Network limit much lower, to permit better SyncE-assisted holdover of T-BCs and T-TSCs
 - Status: agreed, to be published by end 2019
- G.8271.1: Network Limit for chain of T-BCs
 - New budget to meet 1.5µs using Class C clocks, even under long outages (2-3 days)
 - New network limit based on Class C, D T-BC specification, targeting around ±130ns end-to-end ۲

WORK PROGRESS

- New network limit for relative time error, targeting fronthaul clusters
- Status: update expected completion in early 2020

– published January 2019 🗸

G.8272: Comparing PRTC Classes

Parameter	Conditions	Class A	Class B	ePRTC (G.8272.1)
Max TE _L	1pps: unfiltered PTP: 100-sample moving average low-pass filter	100ns	40ns	30ns
dTE _L MTIE	1pps: unfiltered PTP: 100-sample moving average low-pass filter	100ns (max)	40ns (max)	30ns (max)
dTE _L TDEV	1pps: unfiltered PTP: 100-sample moving average low-pass filter	3ns up to 100s, rising to 30ns @ 1000s	1ns up to 100s, rising to 5ns @ 500s	1ns up to 30Ks, rising to 10ns @ 300Ks

- ePRTC has very long-term holdover, requiring high-performance Caesium oscillator
- PRTC-B intended for distributed applications where an ePRTC would not be practical
 - Expected to be based on multi-band GNSS receivers to compensate for the ionosphere
 - Holdover provided by SyncE rather than a Cs oscillator

SyncE: Comparing G.8262 to G.8262.1

11

Parameter	EEC (G.8262)	eEEC (G.8262.1)	
Frequency Accuracy	4.6ppm	Same value	
Pull-in/Hold-in	4.6ppm	Same value	
Wander generation	MTIE: 40ns @ 0.1s, rising to 113ns @1000s TDEV: 3.2ns @ 0.1s, rising to 6.4ns @1000s	MTIE: 7ns @ 0.1s, rising to 25ns @1000s TDEV: 0.64ns @ 0.1s, rising to 1.28 ns @1000s	
Wander tolerance	250ns @ 0.1s, rising to 5000ns @ 1000s	Same value (allows mixed chains)	
Jitter generation	0.5UI <i>(1G, 10G)</i> 1.2UI <i>(25G lanes)</i>	Same value (1G) 10G, 25G: for further study	
Jitter tolerance	250ns @ 10Hz, reducing to 1.5UI (3.6UI for 25G lanes)	Same value (1G) 10G, 25G: for further study	
Clock Bandwidth	1 – 10Hz	1 – 3Hz	
Transient response	120ns initial step, then 50ns/s (const. temp)	10ns initial step, then 10 ns/s (const. temp)	
Holdover	120ns initial step, then 50ns/s frequency offset, plus 1.16 x 10 ⁻⁴ ns/s ² drift <i>(const. temp)</i>	10ns initial step, then 10 ns/s frequency offset, plus 1.16 x 10 ⁻⁴ ns/s ² drift <i>(const. temp)</i>	

Company Confidential

Key: Green – same as G.8262 EEC spec Red – changes to G.8262 EEC spec

G.8273.2: Comparing T-BC Classes

Parameter	Conditions	Class A	Class B	Class C	Class D
Max TE	Unfiltered, 1000s	100ns	70ns	30ns	FFS
Max TE _L	0.1Hz low-pass filter, 1000s measurement	-	-	-	5ns
сте	Averaged over 1000s	50ns	20ns	10ns	FFS
	0.1Hz low-pass filter Const. temp, 1000s	40ns	40ns	10ns	FFS
	0.1Hz low-pass filter Var. temp, 10000s	40ns	40ns	FFS	FFS
dTE _L TDEV	0.1Hz low-pass filter Const. temp, 1000s	4ns	4ns	2ns	FFS
dTE _H	0.1Hz high-pass filter Const. temp, 1000s	70ns	70ns	FFS	FFS

- Class C aimed at shorter chains (up to 10 nodes)
- Class D aimed at longer chains (up to 20 nodes), and fronthaul networks in particular
- All classes now defined over 1, 10, 25, 40 and 100GE interfaces

Company Confidential

SyncE vs. Enhanced SyncE Network Limits

Work in Progress

Future revisions planned for Feb. 2020

- **G.8260 Revision** Definitions
 - Add definition of relative time error, and clarifications on how to measure it
- **G.8261 Amd. 1** *Network Limits for Frequency*
 - TDEV network limit for long chains of enhanced clocks
 - New MTIE limit for shorter chains in fronthaul
- **G.8271 Revision** *Time Synchronisation Aspects*
 - General update
- **G.8271.1 Revision** Network Limits for FTS
 - Timing budget for 1.5us with Class C clocks
 - Network limits for ±130ns
 - Network limits for relative time error
- **G.8273 Amd. 1** Framework for Phase/Time Clocks
- Appendix on Least Squares testing of noise transfer Company Confidential

- **G.8273.4** Partial Timing Support clocks (1st ver.)
- **G.8275 Amd. 2** *Time Sync Architectures*
 - Further details on Coherent Network PRTC (cnPRTC)
 - Possibly also material on FlexE and OTN-based fronthaul architectures
- **G.8275.1/.2** PTP Profiles
 - Minor changes for consistency
 - No material changes to profiles
- GNSS Technical Report
 - New technical report on use of GNSS for timing
- G.SupSyncOAM
 - Supplement on recommended alarms and reported statistics for sync management systems

Calnex

PTP over existing networks: APTS and PTS

- G.8273.4 (Slave Clock Specification) *work almost complete*
 - Contains two clock specifications, for APTS clock and PTS clock
 - APTS Clock:
 - GNSS primary time source, PTP backup
 - Uses GNSS to measure PTP asymmetry during normal operation
 - Operates over switches/routers without PTP support (e.g. BCs, TCs)
 - PTS Clock:
 - Uses PTP as sole means of transferring time
 - Operates over switches/routers without PTP support (e.g. BCs, TCs)
 - Status: first agreement expected Feb. 2020
- G.8271.2 (Network Limits) published August 2017
 - Updated October 2018
 - No new updates planned at present

Coherent Network PRTC

- Network of PRTCs for improved resiliency and accuracy
 - PRTCs exchange time information directly, enabling both ensembling and redundancy
 - "Rogue" PRTCs can be detected and eliminated from timing network
 - Interconnect might be PTP, high accuracy PTP (e.g. White Rabbit), or dedicated optical interconnect
- Possible connection to national lab for both highly accurate UTC(k) and legal time
- Information on cnPRTC to go into G.8275 (Architecture) document
- Status:
 - Initial information in G.8275 Amd. 1 (January 2019)
 - Update on timescale combination agreed (G.8275 Amd. 2), to be published by Sept. 2019
 - Expected completion by early 2020

GNSS Technical Report

- Technical Report looking at using GNSS receivers to obtain an accurate source of time
- Contents:
 - High level description of GNSS systems
 - Factors influencing the performance of a GNSS-based PRTC
 - Sources of time error in GNSS time distribution
 - Mitigation of time error in a GNSS-based PRTC
 - Operational schemes for mitigation of time error in GNSS time distribution
 - Appendices:
 - Cable delay effects and correction in a GNSS receiver
 - Ionospheric Delay and its effect on GNSS receivers
 - TRAIM (Time Receiver Autonomous Integrity Monitoring)
 - Solving GNSS equations to establish position and time
 - The effect of multiple reflections within the antenna cable
- Status: expected completion by early 2020

Sync OAM and Management

- Model proposed using an alternative PTP flow as a reference
 - Not a perfect reference, but a sanity check and indication of network-related issues
 - Described in G.SuppSyncOAM, a working document collecting Sync OAM material
 - Status: probable completion early 2020
- Frequency sync defects and parameters to be documented in a revised version of G.781
 - Status: Published August 2017
 - Update to be agreed February 2020
- Time sync defects and parameters to be documented in new recommendation G.781.1
 - Status: probable completion late 2020

Insight and Innovation

calnexsol.com

Tim Frost, *Strategic Technology Manager,* tim.frost@calnexsol.com