

Calnex Paragon-neo
Calnex Paragon-100G

REMOTE CONTROL GUIDE

Remote Control Guide Page 2 of 18

Contents

Contents .. 2
Introduction ... 3

Physical Connection to the Paragon Instrument ... 3
Overview ... 3
Generating Remote Control Scripts using the Script Recorder ... 3
Using Remote Control from Tcl ... 4

Prerequisites .. 4
Location of the Module ... 4
Using the Tcl Module .. 5

Using Remote Control from Python ... 5
Prerequisites .. 5
Location of the Module ... 5
Using the Python Module ... 5

Using Remote Control from Perl ... 5
Prerequisites .. 5
Location of the Module ... 5
Using the Perl Module .. 5

Content of the Paragon Modules ... 6
Scripting Conventions ... 6
Compatibility Mode .. 6
On-Line Command Reference .. 6

Command Reference Concepts .. 8
Commands and Parameters ... 8
Settings ... 8
Script Command Sequencing .. 9
Simple Script Examples .. 9

TCL .. 10
Python .. 10
Perl ... 11

Calnex Analyser Tool (CAT) Overview .. 11
CAT Files.. 11
CAT Metrics.. 12
CAT Metric / Measurement Analysis .. 14

Retrieving Measurement Results from CAT .. 14
Ports, Measurements, Metrics and Extended Id ... 14
Example: Enabling a Measurement and Retrieving a Result ... 15
Accessing Table Data .. 16
Example: Retrieving Table Data ... 16

Hints and Tips ... 17

Remote Control Guide Page 3 of 18

Introduction

Many users of Paragon have a requirement to automate the testing of their devices. To support this, remote
control functionality is built-in to the Calnex Paragon instruments as a standard feature.

This document details the remote control commands supported by Paragon-100G and Paragon-neo. These
instruments may also be controlled using Paragon-X style commands – please see the Remote Control Guide
installed with your Paragon-X software for more details

Physical Connection to the Paragon Instrument

Remote control commands are sent directly to the Paragon-100G / Paragon-neo from your script. The
computer executing your script can exist anywhere in the network as long as it can access the instrument.

In other words, if the instrument can be reached via a web browser, it can be controlled via a script.

Overview

Testing a device using a Paragon instrument (and associated remote control) involves 3 main components:

 Hardware configuration and capture control

 Metrics analysis and visualisation (using the Calnex Analyser Tool - CAT)

 PTP and ToD Message analysis (using the Calnex Field Verifier – PFV)

The CAT and PFV allow the in-depth analysis of captured data, both on previously captured data (which does
not require access to hardware) and in real-time whilst running a live capture on an instrument.

This document describes how to use the remote control functionality for all of the above components.

Tcl, Perl and Python are supported.

Generating Remote Control Scripts using the Script Recorder

The Paragon-100G and Paragon-neo can record user operations and convert these into scripted commands.
This makes script creation very simple – record keypresses in the browser and then use the recorded script as
part of your test program. The script recorder can log commands for the CAT and PFV as well as instrument
control.

To use script recorder, open a web browser and enter the URL for your instrument. Then select Application
from the menu bar:

To start recording operations, select Start from the Script Recorder panel in the bottom left-hand corner of
the browser window:

Now configure the Paragon and perform the operations you would like scripted

When you have completed your desired operations, click Script. You will now see a new page with your
recorded script:

Remote Control Guide Page 4 of 18

The default script language is Tcl. However, you can change this to Perl or Python from the Language pull-
down. This is possible at any time even after the script has been recorded.

Clicking Update in the top-right hand corner of the recorded script window will update the script with any
actions that have been recorded since the script window was last refreshed.

Click Stop on the main instrument page under Script Recorder to stop recording.

The recorded script can be copied from the script window or downloaded to your local PC.

Selecting Launch API will open a page through which live interaction can be made with the API. The same page
can also be used as a reference for API services, as described in section “On-Line Command Reference”.

Using Remote Control from Tcl

A Tcl module is provided for remote control functionality. This module has been verified using ActiveState Tcl,
version 8.5. It is recommended that this is the version you use.

The Tcl module provides a simple bridge between Tcl and the network interface protocol used to talk to the
Paragon application.

Prerequisites

 ActiveTCL version 8.5

 “REST” package
On Windows this is obtained by executing shell command “teacup update”.
Note: depending on internet connection bandwidth, this step may take several minutes.

Location of the Module

The Paragon Tcl module (calnexRest.tcl) is located in:

//<instrumentIpAddress>/calnex100G/RemoteControl/

Remote Control Guide Page 5 of 18

Using the Tcl Module

The Paragon Tcl module must be referenced using the Tcl source command prior to running Tcl commands or
scripting i.e.

source “//<instrumentIpAddress>/calnex100G/RemoteControl/calnexRest.tcl”

Using Remote Control from Python

A Python module is provided for remote control functionality. This module has been verified using ActiveState
Python, version 3.4. It is recommended that the Python interpreter installed is the same version or newer
otherwise Python functionality may not work correctly.

The Python module provides a simple bridge between Python and the network interface protocol used to talk
to the Paragon application.

Prerequisites

 Python v3.4 or later

 “requests” package:
On Windows this is obtained by executing shell command:
[Python install directory]\Scripts\pip install requests

Location of the Module

The Paragon Tcl module (calnexRest.py) is located in:

//<instrumentIpAddress>/calnex100G/RemoteControl/

Using the Python Module

The Python module must be imported before it can be used i.e.

import sys

sys.path.append(r'\\<instrumentIpAddress>\calnex100G\RemoteControl')

from calnexRest import calnexInit, calnexGet, calnexSet, calnexCreate, calnexDel,

calnexGetVal

Using Remote Control from Perl

A Perl module is provided for remote control functionality. This module has been verified using ActivePerl
5.20. It is recommended that the Perl interpreter installed is the same version or newer otherwise Perl
functionality may not work correctly.

The Perl module provides a simple bridge between Perl and the network interface protocol used to talk to the
Paragon application.

Prerequisites

 ActivePerl 5.20

 “REST-client” package:
On Windows this is obtained by executing shell command:
[Perl install directory]\bin\ppm install REST-client

Location of the Module

The Paragon Perl module (calnexRest.pm) is located in:

//<instrumentIpAddress>/calnex100G/RemoteControl/

Using the Perl Module

The Python module must be referenced before it can be used i.e.

use lib '//<instrumentIpAddress>/calnex100G/RemoteControl';

use calnexRest;

Remote Control Guide Page 6 of 18

Content of the Paragon Modules

Each module provides the following functions:

 calnexInit: must be called before any other function. The parameter is the IP address of the
instrument.

 calnexSet: sets a value for a specified setting

 calnexGetVal: returns the value of a single specified setting

 calnexGet: can return a single value or a set of values

Note: The wrapper functions and documentation for Paragon-100G and Paragon-neo have been revised. The
information in this document is relevant only for Paragon-100G versions later than 06.03 and Paragon-neo
versions later than 00.05.

Scripting Conventions

The native Paragon-100G and Paragon-neo API is an HTTP RESTful API. Regardless of the script language
selected, all commands ultimately will be translated to RESTful API calls.

The Paragon script modules define specific remote control functions for the Paragon products. Each function
maps to one of more associated HTTP RESTful commands. For example:

calnexSet [command]

…maps to RESTful:

PUT [command]

Therefore, with minimal rework, a script generated in one language can be modified to run in another
language. The remote control commands themselves do not need to change, only the ‘header’ section of the
scripts differ.

Compatibility Mode

Scripts generated for Paragon-X products can be run on P100G, although only commands pertaining to
features common to both products are supported.

For a Paragon-X script to run with P100G, its connect command must modified to specify only the IP address
of the P100G instrument. E.g. the following:

connect 192.168.254.1 localhost 9990 9000

…should be modified to:

connect localhost 192.168.254.1

The IP address referred to in the modified script should be the same IP address as is used to reach the
instrument via a web browser, i.e. that which is indicated on the instrument LCD panel after startup.

On-Line Command Reference

An online reference for remote control commands can be obtained via the 100G web application.

First select “Help” from the menu bar:

Then “API” from the Document list:

Remote Control Guide Page 7 of 18

The resulting page represents a list of all available REST API commands. Click on any of the rolled-up sections
(app, cat, instrument, etc.) to reveal a list of individual commands.

GET services are invoked via calnexGet script commands.

PUT services are invoked via calnexSet script commands.

Remote Control Guide Page 8 of 18

Command Reference Concepts

The following concepts are common themes throughout the Paragon remote control manual.

Commands and Parameters

Since the native API for Paragon-100G and Paragon-neo is RESTful, each command is actually a URL. The
format of commands is therefore:

<root>/<node>/… <node>…/<node>

Where <node> may either be a fixed string or a variable string. In the case of the latter, the <node> is similar to
a parameter which is encoded in the URL. For example:

To retrieve a SyncE TIE measurement from the CAT, you could use:

calnexGet “cat/measurement/SyncE/A/TIE/-“

The command being used here is:

cat/measurement/{Name}/{Port}/{MetricType}/{ExtId}

Where ”cat” and ”measurement” are fixed strings. ”SyncE”, ”A”, ”TIE“ and ”–“ are all variable strings that can
be considered as parameters with, for example, parameter Name = “SyncE”.

In addition some parameters may be sent as arguments to the a command. For example:

<FIND AN EXAMPLE>

Settings

Individual instrument settings may be set or queried using remote control commands. Most settings can be set
and queried individually, but some may only be queried. The general syntax for commands is as follows:

To set a setting:

calnexSet <url> <value>

To query a setting:

calnexGet <url>

This will return one or more <parameter value> results. The <parameter value> response from
calnexGet will be either a single value or a JSON string containing multiple values. For example, the
command:

calnexGet “cat/measurement/SyncE/A/TIE/-“

will return a JSON string similar to:

{'Enable': True, 'MaskName': 'No Mask', 'MaskState': 'NoMask', 'RemoveOffset':

{'Enable': False, 'Offset': -0.0001, 'OffsetInRange': -0.0001, 'Unit': 'ppm',

'InContext': True}}

The response contains a number of key/value pairs where the key is the name of an instrument
setting. From the example above, MaskName is a key and No Mask is its associated value. In this case,
this indicates that the SyncE TIE measurement is enabled.

Note that values may themselves be a series of key/value pairs. In the example above, the value
associated with the key RemoveOffset is:

{'Enable': False, 'Offset': -0.0001, 'OffsetInRange': -0.0001, 'Unit': 'ppm',

'InContext': True}

Each scripting language has different methods for extracting specific fields from these responses. See
Simple Script Examples below for examples in each scripting language.

An additional helper function is available in the Paragon modules to retrieve a single value from a
specified key:

calnexGetVal <url> <key>

In the example above, the command:

Remote Control Guide Page 9 of 18

calnexGetVal “cat/measurement/SyncE/A/TIE/-“ “MaskName”

will return “No Mask”.

The parameters taken by these commands are described in more detail later in this document.

Script Command Sequencing

The first Paragon command in any script must be calnexInit. This initialises the wrapper with the IP address
of the instrument being controlled.

In general, a number of remote commands rely on the instrument being in a specific state. Before invoking
these remote control commands, it necessary to ensure that the system is in the appropriate state. For
example, a script wishing to retrieve gain values from a SyncE Wander Transfer Table Sine Generation
operation must first ensure that generation has completed.

The remote control API provides services that can be used to determine run state for each instrument
“application” – items in square brackets are elements (i.e. fields) of the returned object(s):

 /app/generation/synce/esmc/{Port} [RunState]

 /app/generation/synce/wander [RunState]

 /app/measurement/synce/wander/{PortNumber} [RunState]

 /cat/general/status [IsApiCurrentlyProcessing]

 /cat/general/status [IsOpeningInProgress]

Taking the earlier example of SyncE Wander Generation, a remote control script may define the following
utility function (in Python, for example) that would be called to ascertain whether SyncE Wander Generation
had completed:

Likewise, before attempting to retrieve metrics from CAT:

Simple Script Examples

The following outlines scripts structure, language-by-language. Code highlighted in yellow represents that
which is most likely to require editing.

Do not return until Wander Gen has stopped

def waitForWanderGenStopped():

 while (1):

 res = calnexGet("/api/app/generation/synce/wander")

 runState = res["RunState"]

 if(runState == "Stopped"):

 break

 else:

 time.sleep(2)

Do not return until CAT is ready

def waitForCat():

 while (1):

 res = calnexGet("/api/cat/general/status")

 isOpenningInProgress = res["IsOpeningInProgress"]

 if(isOpenningInProgress == False):

 break

 else:

 time.sleep(2)

Remote Control Guide Page 10 of 18

TCL

Variable IpAddress must be set to the IP address of the 100G instrument (as indicated on the instrument LCD
panel after startup). When the script is being run against the same instrument from which it was generated,
then there would not normally be any need to edit this variable, unless the instrument’s IP address has
changed since the script was generated.

Python

Variable IpAddress must be set to the IP address of the 100G instrument (as indicated on the instrument
LCD panel after startup). When the script is being run against the same instrument from which it was
generated, then there would not normally be any need to edit this variable, unless the instrument’s IP address
has changed since the script was generated.

Set instrument IP

set IpAddress "192.168.254.1"

Include wrapper

source "//$IpAddress/calnex100g/RemoteControl/paragon.tcl"

Initialise

calnexInit $IpAddress

Execute instrument actions

Set SyncE Wander measurement run state

calnexSet app/measurement/synce/wander/Port1/start

calnexSet app/measurement/synce/wander/Port1/stop

Get the SyncE Wander sample period value

set responseJSON [calnexGet "app/measurement/synce/wander/Port1/sampleperiod"]

set value [dict get $responseJSON "Value"]

puts $value

Get the SyncE Wander Generation transfer table row 2 'number of cycles' value

set responseJSON [calnexGet "app/generation/synce/wander/transfer/table"]

set rows [dict get $responseJSON "Rows"]

set row1 [lindex $rows 1]

set cycles [dict get $row1 "Cycles"]

set cyclesValue [dict get $cycles "Value"]

puts $cyclesValue

Set instrument IP

IpAddress = "192.168.254.1"

Include wrapper

import sys

sys.path.append('//' + IpAddress + '/calnex100g/RemoteControl/')

from calnexRest import calnexGet, calnexSet, calnexCreate, calnexDel, calnexGetVal

Initialise

calnexInit(IpAddress)

Execute instrument actions

Set SyncE Wander measurement run state

calnexSet("app/measurement/synce/wander/Port1/start")

calnexSet("app/measurement/synce/wander/Port1/stop")

Get the SyncE Wander sample period value

responseJSON = calnexGet("app/measurement/synce/wander/Port1/sampleperiod")

print(responseJSON['Value'])

Get the SyncE Wander Generation transfer table row 2 'number of cycles' value

responseJSON = calnexGet("app/generation/synce/wander/transfer/table")

print(responseJSON['Rows'][1]['Cycles']['Value'])

Remote Control Guide Page 11 of 18

Perl

Variable $IpAddress must be set to the IP address of the 100G instrument (as indicated on the instrument
LCD panel after startup). When the script is being run against the same instrument from which it was
generated, then there would not normally be any need to edit this variable, unless the instrument’s IP address
has changed since the script was generated.

Calnex Analyser Tool (CAT) Overview

The commands in this section describe the commands used to control the Calnex Analyser Tool (CAT) settings
and behaviour. The CAT tool is the main data analysis tool for Paragon products. It allows a user to load a pre-
recorded file and have the raw data analysed immediately or it can be used as a capture is happening to obtain
analysis in "real time".

CAT Files

The following images show typical CAT displays indicating how the layout is organised. In the Select File pane,
the files loaded are indicated along with the Measurement Port to which they have been allocated. Note that
the CAT Measurement Port has nothing to do with the physical ports on the instrument; it is simply the name
given to the file grouping used by the CAT.

BEGIN {$IpAddress = '192.168.254.1';}

Include wrapper

use lib "//$IpAddress/calnex100g/RemoteControl/";

use calnexRest;

Initialise

calnexInit($IpAddress);

Execute instrument actions

Set SyncE Wander measurement run state

calnexSet("app/measurement/synce/wander/Port1/start");

calnexSet("app/measurement/synce/wander/Port1/stop");

Get the SyncE Wander sample period value

my $responseJSON = calnexGet("app/measurement/synce/wander/Port1/sampleperiod");

print $responseJSON->{'Value'} . "\n";

Get the SyncE Wander Generation transfer table row 2 'number of cycles' value

my $responseJSON = calnexGet("app/generation/synce/wander/transfer/table");

print $responseJSON->{'Rows'}[1]->{'Cycles'}->{'Value'} . "\n";

Remote Control Guide Page 12 of 18

CAT Metrics

In the Select Metrics pane, the metrics available for the loaded files are displayed and can be selected or de-
selected.

Measurement Port A

Measurement Port B

Measurement Port D

Measurement Port E

Measurement Port F

Remote Control Guide Page 13 of 18

When a metric is selected, it appears in the View Results pane as a Tab.

Remote Control Guide Page 14 of 18

CAT Metric / Measurement Analysis

Whenever a measurement has been performed then the user can select which metrics they want to be
calculated and displayed. Only the metrics that are available for the currently loaded raw data sets can be
selected.

For example, if a 1588 capture file is loaded then the PDV data can be displayed. Similarly, if a wander file of
any sort is loaded then MTIE, TDEV and clock offset can be calculated and displayed.

Retrieving Measurement Results from CAT

Measurements can be configured and retrieved using a number of commands in /cat/measurement/

Ports, Measurements, Metrics and Extended Id

All commands to retrieve measurement results from the CAT involve four parameters:

 The Measurement Port in which the data file has been loaded

 The Measurement of interest

 The Metric from the Measurement

 The Extended Id (ExtId) for the Metric

The picture below shows how these parameters map to the CAT UI:

Measurement Port

Measurement

Remote Control Guide Page 15 of 18

The table below describes the valid values for each of these parameters.

Data Type CAT Port Measurement Metric ExtId

SyncE Wander / Jitter / ESMC
(measured on instrument Port 1)

A ESMC ESMC Rx, Tx

SyncE TIE, MTIE, TDEV,
CLKMAFE, CKFFO

-

Jitter LongTermJitterPkPk,
LongTermJitterRms,
ShortTermJitterPkPk,

-

SyncE Wander / Jitter / ESMC
(measured on instrument Port 2)

B ESMC ESMC Rx, Tx

SyncE TIE, MTIE, TDEV,
CLKMAFE, CLKFFO

-

WanderGain WanderTransfer -

Packet Measurements D 2Way, Sync,
DelayReq

Packet:
PDV, CF,
PDD, CDF,
PKTTIE, PKTMTIE, PKTTDEV,
MATIE, MAFE, PKTFFO,
FPC, FPR, FPP,

-

Time Error:
TIMEERROR, CTE
DTE, DTEMTIE, DTETDEV, DTEHF,
TransientResponse (2Way only)

Port Events E PortEvents PortEvents -

1pps / ToD F 1ppsTEAbsolute Packet:
MTIE, TDEV,
CLKFFO,

-

Time Error:
ONEPPS,
CTE,
DTE, DTEMTIE, DTETDEV, DTEHF,
TransientResponse

Example: Enabling a Measurement and Retrieving a Result

The example below enables SyncE MTIE and TDEV measurements and applies a G.8262 mask to MTIE. The
mask pass/fail result is then returned.

Metric

Remote Control Guide Page 16 of 18

Accessing Table Data

A number of CAT measurements are represented with both a chart and a table. Table data can be retrieved
using commands in /cat/measurement/{Name}/{Port}/{MetricType}/{ExtId}/dgv/

Example: Retrieving Table Data

The following is an Python example of how to access table data. This example shows how ESMC data may be
monitored during a G.8262 Wander Tolerance test.

Note that table columns may be re-arranged by the user. This means that, before accessing the data from
specific column, it is necessary to determine the column position in the table.

Enable MTIE and TDEV in the CAT

calnexSet("cat/measurement/SyncE/A/MTIE/-/enable", "Value", True)

calnexSet("cat/measurement/SyncE/A/TDEV/-/enable", "Value", True)

#calnexSet("cat/measurement/SyncE/A/MTIE/-/isenabled", "Value", True)

#calnexSet("cat/measurement/SyncE/A/TDEV/-/isenabled", "Value", True)

Select the G.8262 mask and calculate

calnexSet("cat/measurement/SyncE/A/MTIE/-/mask", "MaskName", 'G.8262 Wander Generation EEC

Op1')

calnexSet("cat/general/calculate/start")

time.sleep(5)

Get the pass/fail result from the CAT

pfMTIE = calnexGetVal("cat/measurement/SyncE/A/MTIE/-", 'MaskState')

pfTDEV = calnexGetVal("cat/measurement/SyncE/A/TDEV/-", 'MaskState')

print ("MTIE mask: {} TDEV mask: {}". format(pfMTIE, pfTDEV))

Remote Control Guide Page 17 of 18

Hints and Tips

Using the script recorder is the quickest and easiest way to determine how to make a setting (e.g. how to use
calnexSet). Use the script recorder to determine the command and the parameter settings and then for further
detail, use the on-line help.

Configure and start ESMC generation on port 2 - QL-PRC

calnexSet("app/generation/synce/esmc/Port2/ssmvalue", "SsmValue", 'QL-PRC')

calnexSet("app/generation/synce/esmc/Port2/start")

Start SyncE/ESMC measurement on port 1

calnexSet("app/measurement/synce/wander/Port1/start")

Start generating the table sine tolerance pattern on port 2

calnexSet("app/generation/synce/wander/mode", "Mode", 'Tolerance', "OperationType", 'TableSine')

calnexSet("app/generation/synce/wander/tolerance/mask")

calnexSet("app/generation/synce/wander/start")

time.sleep(3)

Disable the ESMC Tx measurement on port 1 - we are only interested in Rx

calnexSet("cat/measurement/ESMC/A/ESMC/Tx/enable", "Value", False)

To get the ESMC transitions, we first have to figure out which columns

contain the information we want

The columns can be moved around by the user, so we can't rely on them being in a fixed position

So, get the column info

sampleNumberCol = -1

esmcRxCol = -1

columns = calnexGetVal("cat/measurement/ESMC/A/ESMC/Rx/dgv/columns", "ColumnLayout")

for column in columns:

 #print(column)

 if (column["InnerName"] == "SampleNumber"):

 sampleNumberCol = column["Position"]

 elif (column["InnerName"] == "EsmcRx"):

 esmcRxCol = column["Position"]

if (sampleNumberCol == -1 || esmcRxCol == -1):

 print("ERROR: Unable to determine ESMC column positions. Aborting...")

 exit

print("sampleNumberCol: ", sampleNumberCol)

print("esmcRxCol: ", esmcRxCol)

Get initial number of ESMC entries in the table

This is an ESMC Measurement on port 1 (CAT measurement port A).

The Metric is ESMC and we want Rx values only

initialNumRows = calnexGetVal("cat/measurement/ESMC/A/ESMC/Rx/dgv/count", "Count")

print("InitialNumRows: ", initialNumRows)

Display the initial ESMC value

rowData = calnexGetVal("cat/measurement/ESMC/A/ESMC/Rx/dgv/data/0/1", "Rows")

esmcSampleNumber = rowData[0]["DataRow"]["ColumnData"][sampleNumberCol]["Value"]

esmcValue = rowData[0]["DataRow"]["ColumnData"][esmcRxCol]["Value"]

if ("No ESMC Data" in esmcValue):

 esmcValue = "No ESMC Data"

print("Initial ESMC: {} {}".format(esmcSampleNumber, esmcValue))

lastNumRows = initialNumRows

Monitor ESMC while test is running

while isSynceNoiseGenerationRunning():

 time.sleep(30) # Polling period - use 30 seconds for this example

 currentNumRows = calnexGetVal("cat/measurement/ESMC/A/ESMC/Rx/dgv/count", "Count")

 if (currentNumRows > lastNumRows):

 # There has been a change - print out the changed table contents

 for idx in range(lastNumRows-1, currentNumRows-1):

 rowData = calnexGetVal("cat/measurement/ESMC/A/ESMC/Rx/dgv/data/"+str(idx)+"/"+str(1),

"Rows")

 esmcSampleNumber = rowData[0]["DataRow"]["ColumnData"][sampleNumberCol]["Value"]

 esmcValue = rowData[0]["DataRow"]["ColumnData"][esmcRxCol]["Value"]

 print("Changed Rx ESMC: {} {}".format(esmcSampleNumber, esmcValue))

 lastNumRows = currentNumRows

Stop ESMC generation and measurement

calnexSet("app/generation/synce/esmc/Port2/stop")

calnexSet("app/measurement/synce/wander/Port1/stop")

Remote Control Guide Page 18 of 18

Since the script recorder cannot record calnexGet, it is more difficult to determine the commands and
parameters to use when retrieving data or results. In this case, use the on-line help documentation in
conjunction with the Try it out button. In addition, many of the GET commands provide information that can
help establish the path or parameters you need.

It should also be remembered that the above information can also be read, manipulated or printed in your
script. This is useful in determining the structure of the returned values.

