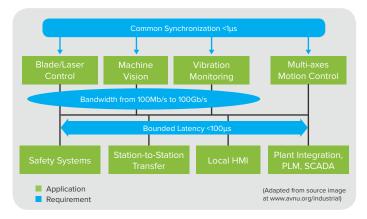
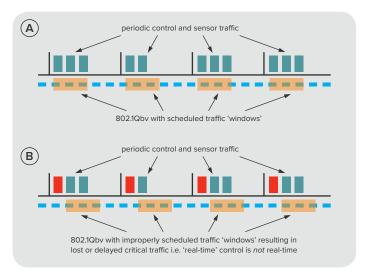
This document outlines how IEEE 802.1AS (gPTP) provides the high-accuracy synchronization which is the foundation of Time Sensitive Networking (TSN), what the challenges are for testing and developing gPTP, and recommended best practice for proving synchronization performance of devices and networks.

gPTP: Testing Synchronization


IEEE 802.1 – TSN and Synchronization

Industrial environments encompass a wide range of applications, including process control, power distribution, motion control and machine control. While the specific requirements for these applications vary, they share a common need for distributed real-time regulation. With the advent of the Industrial Internet of Things, networks serving all these applications are being updated to leverage the advantages of Ethernet versus the many – often proprietary – technologies deployed to date.

To allow Ethernet to serve the particular requirements of distributed real-time systems which are common to industrial applications, the IEEE 802.1 Time-Sensitive Networking (TSN) task group aims to add to and develop the 802.1 group of standards to provide a 'toolbox' for Ethernet networks, allowing application-specific deployments to leverage available capabilities to meet specific needs.


Although details can vary greatly based on the end application, it is generally agreed that network implementations must provide:

- Accurate Synchronization
- Deterministic Latency
- · Controlled Bandwidth

Synchronization is inherently required for many industrial applications, for example to allow real-time data recording and/ or precise sequencing of events. Equipment participating in these applications should be time aligned to better than 1 μ s across the network.

Beyond this, many of the defined 802.1 standards which provide other required networking features, such as 802.1Qbv for Quality of Service guarantees through time-aware traffic scheduling, rely on accurate time provided through the Ethernet network to enable performance. The impact on time-aware scheduling of timing errors is illustrated below. Errors in the transfer of time will therefore manifest in degraded or failed performance of other TSN features.

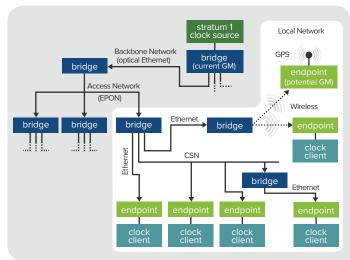
Introduction to gPTP (IEEE 802.1AS)

Shared time throughout the industrial Ethernet network is essential for synchronizing end applications, as well as to enable Time-Sensitive Networking functions such as scheduling (note also that the higher the level of synchronization that can be guaranteed through networks and devices, the better potential end performance and efficiency of applications).

GPS is commonly used for time synchronisation in communications networks around the globe. However, GPS installations need outside antennas with clear sight of satellites (often difficult to achieve in built-up areas) and are prohibitively expensive solutions when the end requirement is distributed time delivery to tens or hundreds of nodes in an industrial environment.

An alternative, and highly accurate, method of transferring time through Ethernet networks is PTP (Precision Time Protocol, defined in IEEE1588-2008). Furthermore, 1588 allows application-specific 'profiles' to be developed for particular needs, resulting in the IEEE 802.1AS general PTP (gPTP) profile being developed for Audio-Video Bridging applications, and being further developed by the TSN task group as 802.1AS-REV.

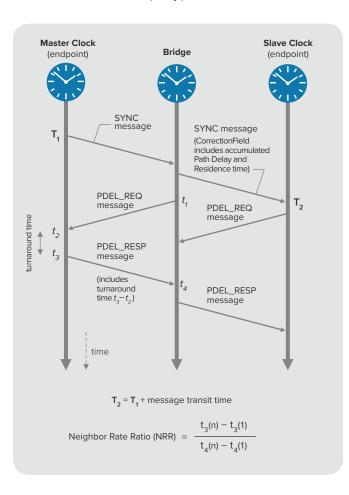
What is PTP?


PTP is a message-based time transfer protocol that is used for transferring time (phase) and/or frequency across a packet-based network. It ensures various points in the network are precisely synchronized to the reference (master) clock so that the network meets specific performance limits according to the network's application.

PTP timing messages are carried within the packet payload. The precise time a packet passes an ingress or egress point of a PTP-aware device is recorded using a timestamp. Assessing the Time Error introduced by these devices is critical to determining network topology, suitability of equipment, and demonstrating network timing compliance.

Why gPTP?

Specifically advantageous for industrial networks is the ability to have fast 'turn-on' – in the context of synchronization this means having locked and accurate timing within seconds. To suit scale and cost requirements, being able to use devices such as 'off-the-shelf' NIC cards that contain lower-cost oscillators is a necessity.


To facilitate this, gPTP systems use a logical syntonization (frequency alignment) technique, in contrast to the physical syntonization technique used in some other PTP systems. This, together with real-time measurement of path and device delays, allows bridge and end-nodes within networks to achieve very fast time alignment.

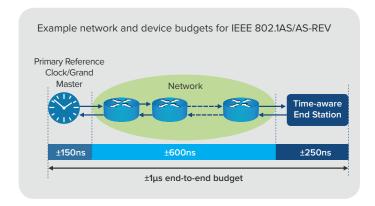
How does PTP work?

gPTP uses the exchange of time-stamped messages to communicate time from a master clock to a number of bridge and end-point devices. The time-stamped messages are SYNC, PEER_DELAY_REQ and PEER_DELAY_RESP as shown below.

Distinct from other PTP implementations, gPTP also uses timestamped messages to calculate frequency offsets and adjust for these during operation. ANNOUNCE messages are also used as described later in this section. (Note: '2-Step' operation allows follow-up messages to carry timestamps of higher accuracy, but is not covered here for simplicity.)

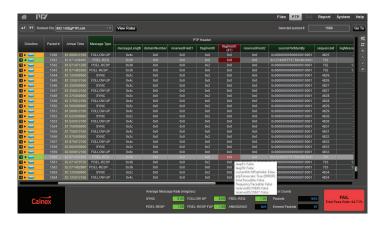
Peer Delay messages yield four timestamps (t1, t2, t3 and t4), from which it is possible to calculate the round-trip time for messages from the initiator to responder, and back, and ultimately the path delay.

Bridge devices calculate their own internal delay, and add this to the calculated path delay, incrementing the value in the Sync message CorrectionField to convey this. This allows each node in a chain to calculate time by factoring in the delay which the Master SYNC message has experienced.

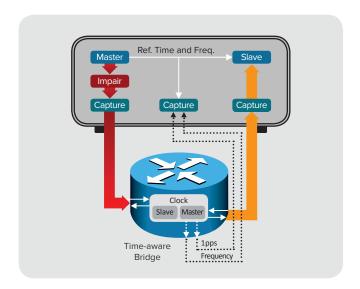

Methods are suggested in 802.1AS that allow Peer Delay messages to also be used real-time to estimate the frequency offset from the Master. Peer nodes calculate the Neighbour Rate Ratio (Frequency Offset from the Peer Node), and use this to adjust the CumulativeScaledRateOffset (CSRO) field in ANNOUNCE messages to reflect the accumulated frequency offset. This information is then used to adjust for frequency offsets, and as such is critical for accurate synchronization performance.

Determining and validating gPTP performance

What is the required network and equipment performance? As described, gPTP is intended to deliver a time signal with a maximum of ±1µs divergence across a time-aware network.


The illustration below gives an example of how this specification can be broken down to provide equipment specifications for Grand Master endpoint devices, time-aware bridges, and slave endpoint devices.

Dependent on the number of network hops between the end points of the network, bridge performance limits can vary by application and deployment. As per the illustration, 5 hops would give a per device limit of +/- 600ns / 5 = 120ns per device. Better timing performance could enable larger networks and/or more efficient operation of TSN techniques.


gPTP protocol interoperability

Often overlooked, a key item in deploying robust PTP networks, is ensuring all devices apply the same PTP profile correctly and consistently. This is particularly important in industrial environments, where 802.1AS-2011 and 802.1AS-REV implementations, or even other PTP profile implementations, could be available on the same pieces of network equipment. Initial 'on-boarding' and evaluation should include validation of PTP message fields.

To prove the PTP performance of network equipment:

- It must be shown that the equipment can connect and engage in a PTP session correctly. It is recommended to use test equipment that can generate and control PTP message exchanges to avoid, for example, 'masking' of interoperability issues (a common problem when using commercial network equipment for test purposes).
- 2. 'Steady state' timing accuracy should be measured either directly on PTP messages, or on external timing outputs if present. It is essential that test equipment validating performance should have measurement accuracy an order of magnitude better than the device performance spec (note: this should cover the entire stimulus to measurement setup, which must be time aligned to confirm, for example, time traceability).
- 3. Response to likely negative conditions (protocol errors, timing offsets, etc.) should also be tested and measured i.e. 'worst-case performance'. Both long-term gradual timing offsets and short-term jumps in timing should be applied to check robustness of equipment. Again, this should be possible without affecting simultaneous timing accuracy measurements.

Fully testing contributing error factors

In the event that there is unacceptable time error detected in a device under test, it is critical to be able to further analyze the available data. Taking the example of a time-aware bridge, should the Time Error fail to meet defined performance levels, the contributing error factors are as mentioned previously:

- · Device Delay Calculation
- · Path Delay Calculation
- Neighbor Rate Ratio (NRR) Calculation

Therefore, it is highly recommended to implement a test environment that provides real-time simultaneous analysis of all of these factors, together with any required stress-testing stimuli.

T1 Time Error

Turnaround Time Accuracy

NRR Accuracy

Software impact on Timing Performance

Outside of the scope of this document, but worth consideration, is how much time error budget within a network should be given to HW-based versus SW-based implementations.

Further information on this topic is available from the document 'Time Transfer in Industrial Ethernet Applications' available from the Calnex Technology Library at calnexsol.com

Related Products

Calnex Paragon-One Industrial

- Focussed one-box test solution for gPTP
- Master and Slave Emulation for fully controllable protocol and timing test
- Automatic protocol configuration for 802.1AS/AS-REV
- Full timing analysis of all gPTP timing metrics and parameters
- Report Generation capability prove performance
- Unrivalled test accuracy

Calnex Paragon-t

- Speed up test time and reduce test complexity with multi-clock measurements
- Measure multiple outputs from a chain of time-aware devices
- 4 x Phase (1 pps accuracy) measurements
- 4 x ToD display measurements
- 4 x Frequency measurements

Calnex PFV

- PTP Field Verifier decode and view multiple PTP fields in an easy-to-use table format
- Check transmitted PTP messages for compliance with IEEE, IEC, ITU-T and userdefined standards and rules
- Analyze all key fields simultaneously, with individual Pass/Fail indications, plus report generation

