
 

1 

 

 

 

 

 

  

For most, the migration to an all-Ethernet or all-IP 

network will be a gradual process as network 

operators endeavour to maximise the lifespan of 

their existing TDM assets. However, the pace is 

quickening with the development of the IEEE 1588v2 

standard. This standard enables the backhaul 

network to migrate to all-Ethernet, which provides 

much-required bandwidth at a far lower cost-per-bit. 

It is of significant interest to network operators 

seeking to grow their revenue by capitalising on 

bandwidth-hungry applications like mobile 

broadband, music and video downloads. This 

document provides a brief overview of IEEE 1588v2 

and looks at how you can characterise devices that 

will implement the standard. 

 

Implementing IEEE 1588v2 for use 
in the mobile backhaul  

 

Technical Brief 
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Introduction 

Although Ethernet has been the technology of choice for a range on LAN and WAN applications for 

decades, using it in the mobile backhaul network presents a major challenge. Here, accurate 

synchronisation of base stations to nanoseconds accuracy is critical to minimise service disruptions and 

eliminate dropped connections as calls move between adjacent cells. Highly accurate synchronisation 

also ensures that the radio spectrum is not spread into the adjacent channels. Plus, without stringent 

phase synchronisation, the multiple signals in LTE's multiple-input/multiple-output (MIMO) architecture 

can simply cancel one another out. And this is where IEEE1588v2 comes in.  

IEEE1588v2 (also known as Precision Time Protocol, PTP) is an industry-standard protocol that 

enables the precise transfer of frequency and time to synchronise clocks over packet-based Ethernet 

networks. It synchronises the local slave clock on each network device with a system Grandmaster 

clock and uses traffic time-stamping, with sub-nanoseconds granularity, to deliver the very high 

accuracies of synchronisation needed to ensure the stability of base station frequency and handovers. 

Timestamps between master and slave devices are sent within specific PTP packets and in its basic 

form the protocol is administration-free. 

Of course, the precision and performance of the IEEE 1588v2 protocol is based on the precision of the 

timestamp. The timestamps of incoming and outgoing packets clearly need to be recorded and 

assessed to ensure synchronisation of master and slave devices. Differences in time and frequency 

between clocks and subsequent equipment corrections need to be evaluated, while clocks must be 

measured to ensure they are within their specified limits. Further, delays and drifts in sync and their 

effect on the transfer of timing through the network need to be considered too.  

Here, we examine the various methods you can use to characterise and measure the precision of 

timestamp synchronisation, as well as the accuracy of clocks, network devices and topology, before 

deploying equipment in an operational network. 

Contents 

Maintaining Sync using IEEE1588v2  3 

 

Propagation Delay Measurement Mechanisms  4 

Synchronisation     4 

Establishing the Master-Slave Hierarchy  4 

Synchronising Ordinary and Boundary Clocks 5 

 

Topologies     9 

Hierarchical Topology    9 

Linear Topology     9 

Multiply Connected Topology   10 

 

Transport of PTP Messages   10 

PTP over UDP over IPv4 over Ethernet  11 

PTP over UDP over IPv6 over Ethernet  11 

PTP over IEEE 802.3/Ethernet   12 

 

PTP Message Formats    12 

 
Testing and Introducing Impairments  19 

Two-way Timing Protocol, PDVs and Wander 20 

 



 

3 

Maintaining Sync using IEEE1588v2 

In a packet transport system, clocks communicate with each other over the communication network 

using PTP.  All clocks, whether master or slave, lead back to – and ultimately derive their time from – 

the ‘Grandmaster’ clock. There are 5 types of PTP clock devices: 

 

Ordinary Clock A single port device that can be a Master or Slave clock. 

Boundary Clock A multi port device that can be a Master or Slave clock. In general 
deployment, a boundary clock has a built-in Slave clock that 
recovers a clock. This clock is then used to drive the built-in Master, 
which supplies the clock to the next node. 

End-to-end Transparent Clock A multi port device that is not a Master or Slave clock but a bridge 
between the two. Forwards and corrects all PTP Messages. 
Correction achieved by addition of the bridge residence time into a 
correction field within the header of the message. 

Peer-to-peer Transparent Clock A multi port device that is not a Master or Slave clock but a bridge 
between the two. Forwards and corrects Sync and Follow_Up 
messages only. Correction achieved by addition of the bridge 
residence time + the peer-to-peer link delay, into a correction field 
within the header of the message. 

Management Node A device that configures and monitors clocks. 

Table 1 – PTP Device Types 

 

Master and slave network devices are kept synchronized by the transmission of timestamps sent within 

the PTP messages. There are two types of message in the PTP protocol: Event Messages and General 

Messages.  Event messages are timed messages whereby an accurate timestamp is generated both at 

transmission and receipt of the message. General messages do not require timestamps but may 

contain timestamps for their associated event message. 

 

 

Event Messages General Messages 

 

Sync 

Delay_Req 

Pdelay_Req 

Pdelay_Resp 

 

 

Announce 

Follow_Up 

Delay_Resp 

Pdelay_Resp_Follow_Up 

Management 

Signaling 

 

Table 2 – PTP Messages 
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Propagation Delay Measurement Mechanisms 
 
There are two mechanisms used in PTP to measure the propagation delay between PTP ports: 
 

 The Delay Request-Response Mechanism  
 

This mechanism uses the messages Sync, Delay_Req, Delay_Resp and, if required, Follow_Up. 
 

 The Peer Delay Mechanism 
  

This mechanism uses the messages Pdelay_Req, Pdelay_Resp and, if required, 
Pdelay_Resp_Follow_Up.  
It is restricted to topologies where each peer-to-peer port communicates PTP messages with, at 
most, one other such port. 

 
 

Ports on Ordinary or Boundary clocks can use either mechanism; ports on end-to-end transparent 
clocks are independent of these mechanisms, and ports on peer-to-peer transparent clocks use only the 
peer delay mechanism. It should also be noted that the two mechanisms do not inter-work on the same 
communication path. 
 
 

 
Synchronisation 
 
There are two phases in the normal execution of the protocol: 
 

 Phase 1 establishes the Master-Slave hierarchy. 
 
 Phase 2 synchronises the clocks using either of the two mechanisms described above. 

 
 
Establishing the Master-Slave Hierarchy 

 
In each port of any Ordinary or Boundary clock there is a PTP state machine. These state machines 
use the ‘Best Master Clock Algorithm’ (or BMCA) to establish the Master for the path between two ports. 
The statistics of the remote end of a path are provided to each state machine by the Announce 
message. Since the local clocks statistics are already known by the state machine, a comparison can 
be made as to which is the best Master.  
 
A simple Master-Slave hierarchy is shown in the following diagram. Paths 1, 2, 3, 4, and 5 may contain 
transparent clocks, but these clocks do not participate in the Master-Slave hierarchy. 
 

 

(M= Master, S = Slave) 

Figure 1 – Simple Master-Slave Hierarchy 
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Synchronising Ordinary and Boundary Clocks (using the delay request-response mechanism) 

Method 1. 

After the Master-Slave hierarchy has been established the clock synchronisation phase can start. This 
consists of the exchange of PTP timing messages on the communications path between the two clocks. 

There are two parts to this synchronisation method: 

(1) Measuring the propagation delay between Master and Slave. Performed using the delay request-
response mechanism. 

(2) Performing the clock offset correction. Once the propagation delay is known the Master can send 
Sync and optional Follow_Up messages containing its master timestamp. These are actually sent 
in part 1 also, but the ratio of propagation delay measurement to Sync message would usually be 
quite low, that is, the propagation delay will be measured less than the clock offset correction. 

(1) Measuring Propagation Delay in Clocks supporting the Delay Request-Response Mechanism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Propagation Delay Message Exchange 

 

 

t1 = Master Time at point of sending Sync Message. 

t2 = Slave Time at point of receiving Sync Message. 

t3 = Slave Time at point of sending Delay_Req Message. 

t4 = Master Time at point of receiving Delay_Req Message. 
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Once the Slave knows the timing of t1, t2, t3, and t4, it can calculate the mean propagation delay (tmpd) 
of the messages path. This is calculated from: 

 

 

The Sync and optional Follow_Up
1
 messages give the master to slave message propagation  

time (t-ms). 

The Delay_Req and Delay_Resp messages give the slave to master message propagation time (t-sm). 

Any asymmetry between t-ms and t-sm introduces an error into the clock offset correction.  

 

(2) Performing the Clock Offset Correction 

Once the Master to Slave propagation delay is known by the Slave, the clock correction can occur in the 
Slave device. 

 

 

 

 

 

 

 

 

 

Figure 3 – Basic Synchronisation Message Exchange 

 

The Slave uses the Sync message and the optional Follow_Up message to calculate the clock offset 
from Master to Slave. This is calculated from 

 

 

The above is a simple model that does not show any end-to-end transparent clocks. End-to-end 
transparent clocks do not serve as Master or Slave clocks but they do insert/update a correction field 
into event messages that allows adjustment of timestamps at the Slave device to remove residence 
times through any transparent clock devices/bridges. The above model would not include any peer-to-
peer transparent clocks as these cannot coexist on the same communications path as the delay 
request-response mechanism. 

                                                 
1
 The Follow_Up message is optional as the t1 timestamp may be sent in the Sync message meaning that the 

Follow_Up message is not required. 
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Method 2. 

After the Master-Slave hierarchy has been established the clock synchronisation phase can start. 

There are two parts to this synchronisation method: 

(1) Peer-to-peer ports maintain a measurement of the link propagation to each peer. They do this 

using the peer delay mechanism. 

 

(2) Performing the clock offset correction. Once the link propagation is known the master can send 

Sync and optional Follow_Up messages containing its master timestamp. 

 

 

(1) Measuring Link Propagation Delay in Clocks Supporting Peer-to-Peer Path Correction 

The link delay between two ports that implement the peer delay mechanism can be measured using the 
following exchange of messages. 

 

 

Figure 4 – Link Delay Measurement 

 

t1 = Port 1 Time at point of sending Pdelay_Req Message. 

t2 = Port 2 Time at point of receiving Pdelay_Req Message. 

t3 = Port 2 Time at point of sending Pdelay_Resp Message. 

t4 = Port 1 Time at point of receiving Pdelay_Resp Message. 
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Once Port 1 knows the timing of t1, t2, t3, and t4, it can calculate the mean link delay (tmld). This is 
calculated from: 

 

 

It then uses this value when calculating the correction field for each Sync or Follow_Up message that 

passes through the bridge. The outgoing correction field will be the sum of the residence time, the 

mean link delay and any correction field from upstream ports. 

 

The Pdelay_Req, Pdelay_resp and optional Pdelay_Resp_Follow_Up
2
 messages allow the round trip 

link delay to be calculated (t-ms + t-sm). 

 

Any asymmetry between t-ms and t-sm introduces an error into the clock offset correction.  

 

 

(2)  Performing the Clock Offset Correction 

 

 

 

 

 

 

 

 

 

Figure 5 – Basic Synchronisation Message Exchange 

 

The Slave uses the Sync message and the optional Follow_Up message to calculate the clock offset 
from Master to Slave. This is calculated from 

 

A benefit of peer-to-peer path correction is that the path delay of each individual Sync or Follow_Up 
message is calculated as it travels along the communication path. It is therefore not affected by a 
change to the path. When using this mechanism the clock synchronisation does not require the return 
path to be calculated as it does in the basic exchange, i.e. the Delay_Req, Delay_Resp messages 
shown in Figure 1 do not occur. The path delay between the Master and Slave in this mechanism is 
simply contained within the correction field of each Sync or Follow_Up message. 

An added benefit is that the Master has less processing to do as it will not receive any Delay_Req 
messages. This can be a major benefit in linear topologies, when many slave clocks are connected to a 
single master. 

                                                 
2
 The Pdelay_Resp_Follow_Up message is optional as the difference between the t2 and t3 timestamps can be 

returned solely in the Pdelay_Resp message meaning that the Pdelay_Resp_Follow_Up message would not be 

required. 
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Topologies 

Different applications favour different topologies. The three main topologies – Hierarchal, Linear and 

Multiply Connected – are shown in the following diagrams (with cyclic paths that should be avoided): 

Figure 6 – Hierarchical Topology 

 

Figure 7 – Linear Topology  
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Figure 8 – Multiply Connected Topology 

 

Transport of PTP Messages 

PTP messages can be transported over several types of protocol. These are listed below. 

Transport Type 

PTP over UDP over IPv4 

PTP over UDP over IPv6 

PTP over IEEE 802.3/ Ethernet 

PTP over DeviceNET 

PTP over ControlNET 

PTP over IEC 61158 Type 10 (Fieldbus) 

Table 3 – PTP Transport Protocols 

The mapping of each PTP message into the lower layer protocols is shown in the following sections. 
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PTP over UDP over IPv4 over Ethernet 

When carried over UDP the first byte of the PTP message immediately follows the final byte of the UDP 
header. The UDP port number field identifies the UDP datagram as a PTP message. 

 

 

 

Figure 4 – PTP Message within UDP over IPv4 over Ethernet 

 

PTP over UDP over IPv6 over Ethernet 

When carried over UDP the first byte of the PTP message immediately follows the final byte of the UDP 
header. The UDP port number field identifies the UDP datagram as a PTP message. 

 

 

 

Figure 5 –PTP Message within UDP over IPv6 over Ethernet 

Ethernet Header Client Data Field Ethernet FCS Ethernet Frame 

IP Data 

 
IP Header 

 

IPv6 Datagram 

UDP Data 

 
UDP Header 

 

UDP Datagram 

PTP Message 

 

Ethernet Header Client Data Field Ethernet FCS Ethernet Frame 

IP Data 

 
IP Header 

 

IPv4 Datagram 

UDP Data 

 
UDP Header 

 

UDP Datagram 

PTP Message 
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PTP over IEEE 802.3/Ethernet 

When carried over Ethernet the first byte of the PTP message occupies the first byte of the client data 
field of the Ethernet frame. The Ethernet type field is set to 0x88F7 and identifies the client data field as 
a PTP message. 

 

 

 

 

 

 

Figure 6 – PTP Message within an Ethernet Frame 

 

 

PTP Message Formats 

All PTP Messages consist of a header, body and optional suffix.  

 

 

 

 

 

 

Figure 7 – Basic PTP Message Format 

 

 

 

 

 

 

 

 

Ethernet Header Client Data Field Ethernet FCS Ethernet Frame 

PTP Message 

 

Header Body Suffix 

34 Bytes Variable length Optional 

PTP Message 
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Header 

The header is common to all PTP messages. It is 34 bytes long and its format is shown below. 

 

 

 

 

 

 

 

 

 

 

Table 4 – PTP Header Format 

 

The messageType field defines which type of message is contained in the body of the message, for 

example Sync, Delay_Req, Delay_Resp etc. 

The messageLength field defines the full length of the PTP message, i.e. including the header, body 

and any suffix (but excluding any padding). 

The domainNumber field identifies the domain the PTP message belongs to. A domain is a logical 

grouping of clocks that synchronise to each other using the protocol, but that are not necessarily 

synchronised to clocks in another domain. 

The flags field contains various flags to indicate status. 

The correctionField contains a correction value in nanoseconds for residence time within a 

transparent clock and will also include the path delay for peer-to-peer transparent clocks. 

The sourcePortIdentity field identifies the originating port for this message. 

The sequenceID field contains (with some exceptions) a sequence number for individual message 

types. 

The controlField is a historical field whose value depends on the message type; it conforms to version 

1 of the standard. The field is similar to the messageType field but with less options. 

The logMessageInterval field is determined by the type of the message. 

Further information on the specific details of each field can be found in standard IEEE P1588. 
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Body 

As previously discussed there are several different types of PTP message. Each is discussed below. 

 

Announce Message 

The announce message is used to indicate the capabilities of a clock to the other clocks on the same 
domain. This allows the Master-Slave hierarchy to be established. (See the IEEE 1588 standard for the 
specific field details.) 

 

 

 

 

 

 

 

 

 

 

Table 5 – Announce Message Format 

 

Sync Message 

The sync request message is sent by a Master clock and contains the Master time when the Sync 
message was sent. If the Master clock is a two-step clock, the timestamp in the Sync message will be 
set to zero and the actual sending timestamp will be sent afterwards in the associated Follow_Up 
message. Sync messages are sent in both types of PTP delay measurement mechanism. 

 

 

 

 

 

Table 6 – Sync Message Format 

 

. 
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Delay_Req Message 

The format of the Delay_Req message is identical to the Sync message. The Delay_Req message is 
sent by a Slave clock and contains the Slave time when the Delay_Req message was sent. Delay_Req 
messages are sent only in the delay request-response mechanism. 

 

 

 

 

Table 7 – Delay_Req Message Format 

 

Follow_Up Message 

The Follow_Up message is optionally sent by a Master clock and contains the Master time when the 
Sync message was sent. It is used when the Master clock is a two-step clock, i.e. two steps – Sync 
message and Follow-Up message. Follow_Up messages are sent in both types of PTP delay 
measurement mechanism. 

 

 

 

 

Table 8 – Follow_Up Message Format 

 

Delay_Resp Message 

The Delay_Resp message is sent by the Master clock and contains the Master time when the 
Delay_Req message was received. Delay_Resp messages are sent only in the delay request-response 
mechanism. 

 

 

 

 

 

Table 9 – Delay_Resp Message Format 

The requestingPortIdentity field contains the sourcePortIdentity field (from the header of the 
associated Delay_Req message) of the Slave that requested this Delay_Resp message. 
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Pdelay_Req Message 

The Pdelay_Req message is sent by a ‘delay requester’ peer-to-peer clock and contains the ‘delay 
requester’ peer-to-peer clock time when the Pdelay_Req message was sent. Pdelay_Req messages 
are sent only in the peer delay mechanism. 

 

 

 

 

 

Table 10 – Pdelay_Req Message Format 

The reserved field is used to make the message length the same as the Pdelay_resp message as 

some networks have different transmit times for different bridge message lengths which would 
introduce asymmetry errors. 

 

Pdelay_Resp Message 

The Pdelay_Resp message is sent by a ‘delay responder’ peer-to-peer clock and contains the ‘delay 
responder’ peer-to-peer clock time when the Pdelay_Req message was received. Pdelay_Resp 
messages are sent only in the peer delay mechanism. 

 

 

 

 

 

Table 11 – Pdelay_Resp Message Format 

The requestingPortIdentity field contains the sourcePortIdentity field (from the header of the 

associated Pdelay_Req message) of the ‘delay requester’ peer-to-peer clock that requested this 
Pdelay_Resp message. 

If the ‘delay requester’ peer-to-peer clock is a two-step clock, the timestamp in the Pdelay_Resp 
message will be set to zero and the actual sending timestamp will be sent afterwards in the associated 
Pdelay_Resp_Follow_Up message

3
. 

 

                                                 
3
 There is also the option of sending a turnaround time instead of the sending timestamp. 
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Pdelay_Resp_Follow_Up Message 

The Pdelay_Resp_Follow_Up message is optionally sent by a ‘delay responder’ peer-to-peer clock and 
contains the ‘delay responder’ peer-to-peer clock time when the Pdelay_Resp message was sent. It is 
used when the ‘delay responder’ is a two-step clock, i.e. two steps – Pdelay_Resp message and 
Pdelay_Resp_Follow_Up message. This message also has the option of sending a turnaround time 
instead of the sending timestamp. The turnaround time of receiving the Pdelay_Req to sending back 
the Pdelay_Resp. Pdelay_Resp_Follow_Up messages are sent only in the peer delay mechanism. 

 

 

 

 

 

Table 2 – Pdelay_Resp_Follow_Up Message Format 

The requestingPortIdentity field contains the sourcePortIdentity field (from the header of the 

associated Pdelay_Req message) of the ‘delay requester’ peer-to-peer clock that requested this 
Pdelay_Resp message. 

 

Signalling Message 

 

 

 

 

 

Table 33 – Signalling Message Format 

The targetPortIdentity field contains the address of the target port/ports of this message. 

TLV = Type, Length, Value Identifier 
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Management Message 

PTP management messages are used to transmit information from a clock to a node manager and 
from a node manager to one or more clocks. 

 

 

 

 

 

 

 

Table 4 – Management Message Format 

The targetPortIdentity field contains the address of the target port/ports of this message. 

The startingBoundaryHops field contains the number of boundary clocks that this message is allowed 

to be retransmitted by. 

The boundaryHops field contains the number of remaining boundary clock retransmissions left for this 

particular management message request or reply. This field is an identical value to the 

startingBoundaryHops field for the initial transmission from the issuing clock/node.  

The actionField contains the type of action that this management message is required to perform. The 

types are Get, Set, Response, Command and Acknowledge. 

The managementTLV fields are shown below. 

 

 

 

 

Table 5 – ManagementTLV field Format 

The tlvType field shall be set to MANAGEMENT (0x0001). 

The lengthField is the length of the TLV. The format is 2+N where N is an even number. 

The managementID field defines the type of management message. Examples of which are Initialize, 

Enable_Port, Disable_Port. See the IEEE 1588 standard for the full list of management IDs. 

The dataField is managementID dependant. See the IEEE 1588 standard for details. 
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Testing and Introducing Impairments 

While IEEE 1588v2 PTP uses an exchange of specially designed packets to calculate the difference in  
time and frequency between two clocks, the overall precision of an Ethernet-based mobile backhaul is 
dependant on many factors. Different topologies, equipment and traffic management introduce different 
amounts of latency and synchronisation jitter. Servicing delays impact the accuracy of the timestamp 
which, in turn, reduces the precision of the clock adjustment calculations. Synchronisation between 
clocks can drift when the frequency offset between the master and the slave is being corrected. 
Additionally network equipment such as switches, routers, and gateways can all introduce latency and 
wander errors. 

Clearly, there is a need to test network synchronisation before and after the deployment of a network 
and/or equipment. One way is to use Calnex Solution’s Paragon Sync test solution, configured as 
shown below: 

 

 

 

 

 

 

 

 

Figure 8 – IEEE 1588v2 Example Test Setup 

 

Configured in this way, the Calnex Paragon can: 

 Perform analysis of 1588v2 messages and timestamps as shown in the graphs below. 

 Run all the ITU-T G.8261 test cases. 

 Capture a PDV profile from a real network or trial network over long periods (many days) and 

replay the same profiles back in the lab during testing. 

 Add impairments to PTP messages: 

o Lost PTP message – ability to delete a specific PTP message type. 

o Duplicated PTP message – ability to duplicate a specific PTP message type. 

o Mis-ordered PTP message – ability to mis-order specific PTP message types or mis-

order between types, e.g. swap order of a Sync and Follow_Up message. 

 PDV insertion onto a specific PTP message type on forward and reverse path. This allows 

path asymmetry to be tested. 

o Ability to insert an equivalent delay value into the correction field of the PTP message 

header. This allows the emulation of a transparent clock. 
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Two-way Timing Protocol, PDVs and Wander 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The Sync PDV (Packet Delay Variation) graph plots 
the PDV based on the Sync message arrival time 
and its embedded timestamp. (When using a 2-step 
clock, the timestamp in the Follow_Up message is 
used instead of the timestamp in the Sync.) This 
determines the PDV from the Master to the Slave. If 
captured next to the Slave device, this shows the 
actual PDV experienced by the Sync message as it 
travels from Master to Slave.  

The Delay_Req PDV is calculated using the arrival 
time of the Delay_Req messages and the embedded 
timestamp in the corresponding Delay_Resp 
messages (t4). This graph shows the PDV from the 
Slave to the Master, as experienced by Delay_Req 
messages travelling to the Master clock. 
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The Follow_Up PDV graph plots the variation in 
arrival time between Sync and Follow_Up 
messages. This can indicate whether or not there is 
a regular gap between these messages and whether 
the gap can affect the operation of the Slave clock 
recovery. An excessive gap may lead to the Slave 
discarding the corresponding Sync message as it 
time-outs waiting for its arrival, hence leading to a 
reduction in the number of timing events received by 
the Slave clock recovery circuit. 

The Slave Clock Wander is a measurement of the 
stability of the recovered Slave clock. The 
embedded timestamp in the Delay_Req message 
(T3) is plotted while synchronised to the Master. This 
gives the ability to monitor the Slave clock wander 
on the Ethernet interface without needing access to 
the actual recovered clock signal. 

The Round Trip Delay (RTD) variation graph plots 
the variation in {(t2-t1)+(t4-t3)}/2, which is the RTD 
calculation performed by the Slave. This indicates 
the stability of this RTD, and allows the user to 
assess whether changes in RTD are impacting the 
Slave clock recovery and stability. Significant 
variation will stress the Slave’s clock recovery circuit 
to determine the true path delay. Floor delay is an 
important parameter in some Slave clock 
implementations. If the floor delay moves up for long 
periods, this may cause wander in the recovery 
clock. Other designs are reported to use certain 
bands of delay e.g. only the message pairs that 
exhibit a RTD between x% and y% of the total range 
measured. If the density therefore changes, this may 
cause wander in the recovered clock. 

The Asymmetry graph plots the difference between 
Master > Slave delay and Slave > Master delay. 
This variation is effectively a variation in symmetry, 
which is a basic assumption of IEEE-1588. If a 
variation is detected, the user can assess its impact 
on Master and Slave clock operation. As the slave 
assumes symmetry, changes in symmetry will cause 
errors in the calculation of time. Significant, 
sustained changes in path symmetry may lead to 
wander in the recovered clock. 
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The 1588v2 Header capture on the Calnex Paragon can also help troubleshoot issues with Master and 
Slave clocks. The screen above shows a deviation to the normal Sync-Delay_Req-Delay_Resp 
sequence of messages. In this case, a Delay_Req message (Seq ID 44687) has not had a Delay_Resp 
response. A batch of Sync messages is also sent by the Master with no response; this can give insight 
into the operation and interaction between Master and Slave devices. 

  

The Sync Inter-Packet Gap (IPG) graph shows the 
variation in arrival time of the Sync messages. There is 
no requirement for the messages to arrive in a regular 
spacing as each carries a timestamp. However, 
excessive variation will lead to periods where the number 
of Sync messages being received is significantly 
reduced. If this occurs at the same time as excessive 
PDV in the network, the pre-selection algorithms in some 
Slave devices may lead to very few Sync messages 
being selected to be passed to the clock recovery circuit. 
This can lead to increased wander on the output.   

The Delay-Resp Round Trip Delay (RTD) graph shows the 
in time taken by the Master to respond to the Delay_Req 
message with a Delay_Resp message.  There is no 
specification for this parameter. The Slave must wait for the 
Delay_Resp message to arrive in order to be informed of 
the t4 time. Without this information, it can not determine 
the Round Trip Delay. The Slave will not wait forever for 
the response to arrive and will have a time-out 
implemented. Should the Master’s response time 
significantly increase (e.g. when multiple Slaves all send 
Delay_Req messages concurrently), a time-out may be 
invoked.  This will lead to a significant reduction in the 
number of RTD calculation events available to the Slave 
and hence lead to increased wander on the recovered 
clock.  
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For more information on the Calnex Paragon Sync, and to take 
advantage of Calnex’s extensive experience in sync and 
packet testing technologies, please contact Calnex Solutions 
on +44 (0) 1506 671 416 or email: info@calnexsol.com  
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